Постановка задачі оптимального стохастичного керування

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ПОСТАНОВКА ЗАДАЧІ ОПТИМАЛЬНОГО СТОХАСТИЧнОГО КЕРУВАННЯ

1. Загальні положення

 

Позначатимемо простір станів, , .

Можливі керування є множиною припустимих керувань , яка у свою чергу є підмножиною простору керувань : , .

Послідовність керуючих функцій , , записана у вигляді

(1),

 

називається стратегією керування.

Задача оптимального керування системою (1) полягає в пошуку такої послідовності функцій керування , що мінімізує цільовий функціонал системи за кроків. Ця послідовність називається оптимальною стратегією керування.

Визначення. Якщо кількість кроків, на яких досліджується поведінка системи, є скінченною, то задача називається задачею зі скінченним горизонтом рішення. Якщо ж ми розвязуємо задачу на нескінченному часовому інтервалі (), то горизонт рішення є нескінченним.

Задача оптимального стохастичного керування з дискретним часом випливає із детермінованої задачі, якщо система функціонує за умов випадкових збурень . У цьому випадку функція (1), що визначає стан системи на кожному наступному кроці, залежить від поточного стану , керування і випадкових збурень :

 

, .(2)

Збурення є елементами деякого ймовірнісного простору (де простір збурень, -алгебра підмножин з ) і має розподіл .

 

2 Критерії якості

 

Розглянемо спочатку критерії якості, які найчастіше використовуються в детермінованих дискретних задачах керування, а потім перейдемо до стохастичного випадку. Якщо на кожному кроці функціонування системи задана функція , що визначає витрати за один крок керування, то критерій якості руху матиме вигляд

 

.(3)

 

Величина , що називається коефіцієнтом дисконтування, визначає внесок витрат за всі попередні кроки на кожному поточному кроці.

Найчастіше критерій (3) використовується в тих випадках, коли необхідно розвязувати задачі, повязані з витратами деяких видів ресурсів. Саме цей функціонал ми будемо використовувати надалі.

Крім критерію (3) розглядаються також критерії, які мінімізують горизонт системи і є аналогом часу руху для неперервних систем. У цьому випадку цільовий функціонал матиме вигляд

 

.

 

Також часто в дискретних задачах керування використовуються термінальні функціонали якості

або ,

 

де заданий стан системи, кінцевий стан системи.

Оскільки в задачі оптимального стохастичного керування збурення випадкові, то може бути тільки апріорна інформація про них, наприклад, у вигляді функції розподілу, відомої повністю або частково. У цьому випадку якість процесу керування оцінюється за допомогою формули

 

,

 

яка дорівнює математичному сподіванню функції .

 

3 Види функцій керування стохастичною системою

 

Задача детермінованого керування відрізняється від свого стохастичного аналога тим, що в першій відсутні неконтрольовані фактори , і еволюція системи однозначно визначається обраним керуванням . Отже, у задачі детермінованого керування для кожного початкового стану можна заздалегідь вибрати послідовність оптимальних керувань , , …, , застосування яких дає оптимальне значення функціонала .

Для стохастичної системи в загальному випадку цього зробити не можна, оскільки система переходить зі стану в стан не тільки під дією керування ; на неї на кожному кроці також впливають випадкові величини . Очевидно, що, по-перше, ці величини можуть так змінити траєкторію системи, що обране раніше за оптимальне керування в момент його застосування вже таким не буде, і, по-друге, інформація, одержувана на кожному кроці про впливи , що мали місце, може бути додатково використана для поліпшення якості керування (рис. 1).

 

Рисунок 1 Еволюція стохастичної системи ( заданий стан)

 

Отже, для розвязання задач оптимального стохастичного керування доцільно використовувати стратегії , у яких функція минулих станів системи. У цьому випадку схема визначення оптимального керування на кожному кроці наступна. Якщо початковий стан системи, то за перше керування вибирається функція . Якщо мали місце стани , …, і були задані керування , …, , то керування на -му кроці вибирається як функція , ( для всіх ). Отже, для вибору керування використовується вся інформація, що є в наявності. Описана стратегія керування є позиційною, оскільки керування визначається залежно від реалізованих позицій (станів) системи, на відміну від програмного керування, коли послідовність керувань визначається заздалегідь, до початку процесу керування, і є функцією часу.

Розглянемо окремі випадки.

Якщо , , то керування називається стаціонарним керуванням. Такі стратегії найпростіші, оскільки є одним і тим же вектором для всіх моментів часу.

Керування , , називається марковською позиційною стратегією (стратегією, кожний елемент якої залежить тільки від поточного стану системи).

Керування , , називається напівмарковською позиційною стратегією (стратегією, кожний елемент якої залежить тільки від поточного і початкового станів системи).

Марковські та напівмарковські позиційні стратегії використовуються найчастіше.

Зрозуміло, що в загальному випадку кінцевий стан системи , згідно з формулою (2) , , залежить від початкового стану , керувань і збурень . Щоб переконатися в цьому, досить виразити в (2) через , потім