Поняття та класифікація систем радіоавтоматики
Информация - Компьютеры, программирование
Другие материалы по предмету Компьютеры, программирование
? спосіб багаточлена правої частини рівняння на многочлен лівої частини.
Наприклад, якщо диференціальне рівняння інерційного RC- елемента має вигляд.
;
звідки
.
Тоді
Тепер при виконанні заміни оператора p на комплексну змінну S отримаємо:
У цьому виразі комплексні величини x(s) і Y(s) є зображенням за Лапласом часових величин x(t) і y(t).
4.6 Перехід від передатної функції до частотної характеристики
У загальному виді передатна функція записується так:
,
де Q(s) - багаточлен у чисельнику, P(s) багаточлен у знаменнику, к постійний множник.
Замінимо комплексну перемінну s на комплексну частоту j - одержимо амплітудно-фазо-частотну характеристику елемента (системи):
.
Наприклад, передатна функція послідовного зєднання безінерційного підсилювача з коефіцієнтом підсилення к-го інерційного RС- ланцюга має вигляд
.
Замінимо s на j:
це модуль комплексного виразу, або ж, амплітудо-частотна характеристика даного елемента;
- це аргумент комплексного виразу, або ж, фазочастотна характеристика елемента.
Запишемо W(j) в алгебраїчній формі:
.
Тут U() реальна частотна характеристика. V() - уявна частотна характеристика.
У випадку замкнутої системи РА передатна функція позначається через Ф(s),а амплітудно-фазо-частотна характеристика через
,
де P() і Q() відповідно реальна і уявна частотні характеристики замкнутої системи.
4.7 Логарифмічні частотні характеристики
У реальних автоматичних системах модуль частотної характеристики змінюється в дуже широких межах при зміні частоти. Тому графічне зображення їх у звичайному масштабі неможливо. У цих випадках зручно скористатися логарифмічними частотними характеристиками: амплітудною і фазовою.
Логарифмічна амплітудно-частотна характеристика визначається співвідношенням
,
де L() у децибелах, а частота відкладається в декадах чи октавах. Логарифмічна фазо-частотна характеристика () відображається в градусах, а частота у декадах чи в октавах (рис.5).
Рисунок 5 Логарифмічні амплітудно-фазо-частотні характеристики