Повышение качества измерения и выбор методов и средств для контроля размеров в деталях типа "вал" и "корпус"

Курсовой проект - Разное

Другие курсовые по предмету Разное

требуемого характеристического импеданса. Для уменьшения многократных отражений демпфер выполняют в виде конуса, либо тыльную поверхность демпфера выполняют непараллельной пьезопластине. либо в материал демпфера вводят рассеиватели.

Протектор служит для защиты пьезопластнны от механических повреждений и воздействия иммерсионной или контактной жидкости, согласования материала пьезопластины с материалом контролируемого изделия или средой, улучшения акустического контакта при контроле контактным способом. Материал протектора должен обладать высокой износостойкостью и высокой скоростью звука, которая определяет необходимую толщину. Последняя обычно выбирается равной 0.1…0,5 мм. Для изготовления протекторов применяют кварц, сапфир, бериллий, сталь, твердые сплавы, керамику, а также материалы на основе эпоксидных смол с порошковыми наполнителями (кварцевый песок, корундовый порошок) и т.п.

Для обеспечения стабильности акустического контакта протектор делают из эластичного материала с большим затуханием ультразвука и волновым сопротивлением, близким к сопротивлению контактной жидкости, например из пленки полиуретана. Такой протектор облегает неровности поверхности изделия и способствует устранению интерференции в слое контактной жидкости, т.е. основной причины нестабильности контакта.

Для улучшения передачи ультразвука от пьезопластины в иммерсионную жидкость используют четвертьволновые протекторы, обеспечивающие просветление границы пьезопластина - жидкость.

Призму изготовляют обычно из материала с небольшой скоростью звука (оргстекло, капролон, поликарбонат, полиамидоимид, деклон, эпоксидные компаунды), что позволяет при относительно небольших углах падения получать углы преломления до 90. Высокое затухание ультразвука в призме обеспечивает ослабление не вошедшей в изделие волны, которое увеличивается в результате многократных отражений. Для улучшения этого эффекта в призме часто предусматривается ловушка, удлиняющая путь отраженных колебаний. На пути этих колебаний располагают зоны небольших отверстий, грани призмы выполняют ребристыми или приклеивают к ним материалы с приблизительно одинаковым характеристическим импедансом, но со значительно большим затуханием. вал корпус деталь устройство

Для того чтобы в изделие проходили волны только одного типа, угол падения (наклона призмы) делают либо небольшим (при этом поперечные волны практически не возбуждаются), либо в интервале между первым и вторым критическим углами. В этом случае при переходе из призмы в изделие излучаемые пьезопластиной продольные волны трансформируются в поперечные.

В раздельно-совмещенных преобразователях призма должна удовлетворять дополнительным требованиям. Например, в толщинометрии важно, чтобы время прохождения колебаний сквозь призму не зависело от температуры, поэтому в этом случае призму изготовляют, например, из плавленого кварца, имеющего малые температурные коэффициенты линейного расширения и изменения скорости ультразвука.

Корпус служит для обеспечения прочности конструкции, а также для экранирования от электромагнитных помех, поэтому корпус из пластмассы металлизируют.

Электрические контакты выполняют пайкой легкоплавкими припоями, особенно на пьезокерамических пластинах, во избежание их располяризации. Для соединения преобразователя с электронным блоком дефектоскопа применяют максимально гибкий кабель (микрофонный или коаксиальный). Часто для согласования с электронным блоком дефектоскопа внутри корпуса преобразователя размещают трансформатор, катушку индуктивности, резистор, а иногда и предварительный усилитель.

Ультразвуковой эхо-метод

Ультразвуковой эхо-дефектоскоп.

Ультразвуковой эхо-дефектоскоп предназначен для обнаружения несплошностей и неоднородностей в изделии, определения их координат и размеров и характера путем излучения импульсов ультразвуковых колебаний, приема и регистрации отраженных от неоднородностей эхо-сигналов.

 

Рис. 14 Структурная схема эхо-дефектоскопа.

 

Преобразователь 2 служит для преобразования электрических колебаний в ультразвуковые, излучения УЗ-полей в изделие, приема эхо-сигналов от отражающих поверхностей в изделии 1.

Синхронизатор 3 обеспечивает синхронную работу узлов дефектоскопа, запуская генератор 4 импульсов возбуждения преобразователя, глубиномер 12, а также генератор развертки 10. Роль синхронизатора иногда выполняет генератор зондирующих импульсов.

Генератор 4 импульсов возбуждения преобразователя вырабатывает высокочастотные электрические импульсы, возбуждающие преобразователь. Обычно генерируются ударные экспоненциально затухающие импульсы, хотя энергетически более рациональной их формой является колоколообразная. В некоторых приборах регулируются амплитуда и длительность генерируемых импульсов.

Приемно-усилительный тракт состоит из усилителя высокой частоты (УВЧ) 6, детектора 7 и видеоусилителя 5. УВЧ выполняется апериодическим (широкополосным) или резонансным. Коэффициент усиления УВЧ во времени регулируется напряжением, подаваемым с блока 9 временной автоматической регулировки усиления (ВАРУ). На входе (или вблизи входа) усилителя включают калибровочный аттенюатор 5 для относительного измерения амплитуд эхо-сигналов.

Детектор или видео усилитель обычно снабжают регулируемой отсечкой шумов, исключающей прохожде