Анализ структуры и свойств композиционных материалов на основе циркониевой керамики и кальций-фосфатных соединений

Курсовой проект - Медицина, физкультура, здравоохранение

Другие курсовые по предмету Медицина, физкультура, здравоохранение

°тора полимеризации (пероксид бензоила) и, если необходимо, рентгеноконтрастных добавок (сульфат бария). В состав жидкости входят мономер (метилметакрилат), ингибитор (гидрохинон) и активатор (диметил-р-толуол) полимеризации. Ингибитор препятствует полимеризации мономера во время хранения, а активатор инициирует его полимеризацию после смешения с порошком.

Силиконовый эластомер - кремнийорганический полимер, обладающий каучукоподобными свойствами, имеет структурную формулу

 

 

Силиконовый эластомер - кремнийорганический полимер, обладающий каучукоподобными свойствами, имеет структурную формулу

В низкомолекулярной форме он представляет собой силиконовую жидкость. Основу силиконовых эластомеров, применяемых для изготовления эндопротезов, составляют макромолекулы полидиметилсилоксана (R = R = - CH3, молекулярная масса - 750000), содержащие некоторое количество метилвинилсилоксановых звеньев (R = - CH = CH2), способных образовывать поперечные связи. Это связующее наполняют вспененным кремнием, имеющим большую удельную площадь поверхности (400 м2/г), а затем вулканизируют в присутствии катализаторов (редких металлов и пероксидов). Плотность поперечных сшивок между макромолекулами после вулканизации - одна на 325 атомов кремния. Конечный продукт имеет вид гигантской трехмерной молекулы, из которой удаляют летучие остатки [9].

КЕРАМИКА

Хотя некоторые виды керамических материалов используются в медицине более 25 лет, широкое применение керамики для изготовления эндопротезов суставов началось только в 90-е годы ХХ в. В ортопедии имеется положительный опыт использования в эндопротезах следующих видов керамики: на основе оксида алюминия Al2O3, оксида циркония ZrO2 и на основе фосфатов кальция - Сa3(PO4)2 и Сa5(PO4)3OH (гидроксиапатит). Привлекательными свойствами керамики являются высокая химическая стабильность, твердость, незначительная деформация под нагрузкой, износостойкость, выносливость и отсутствие проблем со старением в биологическом окружении. Фосфатную керамику относят к биоактивным, медленно растворимым in vivo материалам, в которые врастает костная ткань. Главным недостатком керамики считают ее хрупкость, и поэтому не всегда предсказуемое поведение керамических имплантатов под нагрузкой [10].

Алюминиевая керамика один из широко применяемых материалов медицинской техники. Она характеризуется очень высокой прочностью при сжатии (предел прочности - 4500 МПа, модуль упругости - 380 ГПа), в то время как показатели прочности при изгибе (предел прочности - 550 МПа) и растяжении - гораздо ниже. Биологический ответ in vivo на имплантаты из алюминиевой керамики минимален [10]. Снижение механических характеристик, зарегистрированное при моделировании влияния биологического окружения in vivo на прочность керамики, объясняют проникновением растворов в поры недостаточно плотного имплантата.

С позиций дислокационной теории прочности хрупкое разрушение керамики объясняется ростом имеющихся в образце трещин, вследствие отсутствия у их вершин локальных зон пластической деформации. В отличие от металлов, при растяжении которых края трещин округляются из-за пластического течения всего образца, керамика практически не деформируется, края трещин в ней остаются острыми, и при нагружении образца трещина растет в длину.

Имплантаты из алюминиевой керамики получают по технологии порошковой металлургии спеканием при 1600 оС заготовок, спрессованных из порошка Al2O3. В качестве добавки, улучшающей спекание, применяют магнезию MgO. Порошок Al2O3 мелкого помола должен иметь min количество примесей, т.к. только чистая керамика обеспечивает требуемую степень биосовместимости [11]. Такие примеси, как силикаты, щелочные оксиды и известковые включения образуют на границах зерен стекловидную фазу с низкой химической стабильностью. Появление стекловидной фазы уменьшает показатели предельной и усталостной прочности имплантатов. Одной из лучших марок алюминиевых керамик для эндопротезов суставов считают Biolox производства фирмы CeramTec (Германия) [20]. Обработку керамических деталей эндопротезов проводят в чистых помещениях.

 

Таблица 2. Составы и механические свойства керамических материалов [12]

ХарактеристикаКерамикаАлюминиевая маркиЦиркониевая, марокBIOLOX forteY-TZP ZIOLOX forteMg - PSZСтандартISO 6474ISO/DIS 13356-Химический составAl2O3 + MgOZrO2 + Y2O3ZrO2 + MgOТип материалаКорунд поликристаллическийПоликристаллический тетрагональный ZrO2Частично стабилизированный ZrO2Модуль упругости при сжатии, ГПа380210210Твердость по Виккерсу, ед.200012501250Предел прочности при изгибе, МПа>500>900>500Размер зерна, мкм<2<0,530Типичные детали эндопротеза тазобедренного сустава, выполняемые из керамики - шаровая головка бедренного и вкладыш тазового компонентов. Сферические поверхности трения этих деталей подвергают чистовой обработке с помощью алмазного инструмента. После такой обработки узел трения эндопротеза хорошо смачивается синовиальной жидкостью и имеет низкий коэффициент трения.

Основные свойства алюминиевой и других конструкционных керамик медицинского назначения приведены в табл. 2 [12].

Циркониевая керамика - материал, полученный спеканием порошкообразного оксида циркония ZrO2. Об этом виде соединения будет указано позже.

Керамика на основе фосфата кальция CaP характеризуется самой высокой среди технических материалов степенью биосовместимости. Ее химическая структура подобна структуре эндогенной (образовавшейся внутри организма) кости, поэтому вокруг имплант?/p>