Особенности статистической оценки качества теста диагностики индивидуального прогресса учащихся общеобразовательной школы

Дипломная работа - Педагогика

Другие дипломы по предмету Педагогика



орой уровень (освоение существенного основания способа действия) - выполнение задания, предполагающего выделение существенного отношения предметной ситуации. Выполнение заданий второго уровня говорит о том, что учащийся способен провести анализ задания, выделить математическое отношение, представленное не в прямом виде, а завуалировано, с провокацией (с лишними данными, с недостающими условиями, в буквенном или символическом виде). Этот ученик может выделить способ работы и применить его в новых условиях, он может осуществить перенос выделенного им математического отношения, например, с графического плана, на другой - буквенный, текстовый, т.е. ребенок способен адекватно сконструировать речевое выражение (текст задачи). Такой ученик преодолевает натуральное отношение к математическим знакам и выделяет существенное отношение, составляющее основу решения.

Третий уровень (функциализация способа действия) - выполнение задания, предполагающего произвольное соотнесение двух планов - схемы решения задачи и ее текста. Ученик, выполняющий задания третьего уровня, может проводить анализ задания, выделять существенные отношения, представлять изменения отношений в условном плане, изобретать модели, преобразовывать исходные модели, конструировать задания, проводить исследования. Можно говорить, что изученные знаковые средства (чертежи, схемы и пр.) становятся для этого ребенка ресурсом для анализа и выполнения, новых для него заданий [22].

Диагностика действия на основе предложенной уровневой схемы позволяет помимо сравнительных данных получить ответ на вопрос, на каком этапе становления данного ученика (или группы учащихся) некая компетенция находится, то есть увидеть ее в развитии, оценивая пройденный путь и ближайшую перспективу [15].

Особенность теста заключается в том, что выводы об уровне мышления и понимания делаются на основе трех срезов (тест проводился три раза через определенный промежуток времени). Существенным здесь является то, что тест должен быть чувствительным к предметной динамике учащегося. Прогресс учащихся в овладении средствами действия определяется по результатам трех срезов, а уровень, на котором находится (или, на который вышел) школьник - по результат двух срезов.

Специфика теста по математике в том, что в многоуровневых задачах уровни заданы в пределах одной задачи и выстроены как изменение способа действия, то есть, чтобы решить задачу на третьем уровне, необходимо преобразовать способ действия, обнаруженный на втором уровне (см. Приложение 2, задания серии Мозаика). Одиночные задачи представляют набор заданий, не связанных между собой, но отличие между уровнями также задано через изменение способа действия на втором уровне и его преобразование на третьем.

В силу специфики теста, а также того, что по своему принципу он является неоднородным, необходимо вводить процедуру первичной обработки тестовых заданий. В следующем параграфе мы рассмотрим и проанализируем методы, которые использовались при обработке теста диагностики ИП.

3.2 АНАЛИЗ СТАТИСТИЧЕСКИХ МЕТОДОВ, ИСПОЛЬЗУЕМЫХ ПРИ РАЗРАБОТКЕ ТЕСТА ДИАГНОСТИКИ ИНДИВИДУАЛЬНОГО ПРОГРЕССА

Диагностический комплект для мониторинга индивидуального прогресса учащихся школы апробировался на 10 пилотных площадках, расположенных в Самарской области, республики Чувашия, городах Томск, Москва, Красноярск. Апробация основывалась на трех тестовых срезах, которые проводились в 2003-2005 годах. В каждом тестировании участвовало около 2700 учащихся 2-4 и 6-9 классах.

Задача первого среза заключалась в первичном опробовании массива разработанных тестовых заданий. Поэтому на этом этапе статистические методы не использовались.

Задачей второго и третьего срезов являлось как получение данных об учащихся, так и статистическое подтверждение качества тестовых задач.

Для проведения соответствующего анализа были отобраны данные двукратного выполнения одного и того же набора заданий одними и теми же учащимися. То есть, по сути, была применена процедура повторного тестирования и сопоставления результатов двух идентичных срезов. При этом, для сохранения возможности сравнения данных, полученных на разном предметном материале (математика, физика и т.д.), из выборки исключались учащиеся, которые выполняли тест не полностью (например, решали задания по математике, но не решали по физике).

В итоге общая выборка испытуемых составила 4106 человек, из них 734 человека - учащиеся начальной школы и 3372 - учащиеся основной школы [15].

Напомним, что нас будет интересовать тест по математике в основной школе, в апробации которого участвовало 1140 учеников.

Решая вопрос о валидности теста, авторы исходили из того, что в данном случае говорить о содержательной валидности не имеет смысла, поскольку измеряемый объект (компетентность) на сегодня не имеет устоявшегося общепринятого описания. В то же время, поскольку в основу построения тестового инструмента положена специально разработанная для данного проекта теоретическая схема, желательна проверка ее адекватности. В литературе такого рода валидность теста называется конструктной, или концептуальной. Для проверки конструктной валидности авторами было сформулировано несколько гипотез относительно возможных результатов тестирования, которые были подвергнуты эмпирической проверке. Рассмотрим их:

1.Уровни заданий положительно связаны с мерой их статистической трудности.

2.Тестируемы?/p>