Основы теории и технологии контактной точечной сварки
Методическое пособие - Разное
Другие методички по предмету Разное
пластической деформации ?Д и диаметра уплотняющего пояска dП в процессе КТС определяли по методикам, описанным в п. 4.1.
При этом, как следует из результатов расчетов КЖ при КТС деталей разных толщин s из одного и того же материала при hЯ ? s, а ?t = tСВ значения ТС относительно стабильны. Так, например, при сварке деталей из сплава АМг6 ТС ? 560 С, из сталей 12Х18Н10Т и 08кп 1300 и 1380 С соответственно. С учетом скрытой теплоты плавления металла в ядре это в определенной мере оправдывает допущение о том, что ТС ? ТПЛ в методиках расчетов ?Q1 и ?QЭЭ [3], по которым определяли их значения при расчетах значений теплового КПД ?Т.
Результаты расчетов, в частности, приведенные в табл. 1. показывают, что при оптимальных режимах КТС деталей разных толщин из материалов, относящихся к одной группе свариваемости, значения КЖ относительно стабильны. То есть, для этих условий КТС показатель КЖ обладает свойствами критерия. Но это означает
только то, что практикой КТС отработаны режимы, при которых устойчивость процессов сварки против выплесков и непроваров примерно одинакова, т. е. они имеют одинаковую жесткость. Так, например (рис. 4.23), различные сочетания IСВ, tСВ и FЭ
позволяют получать неизменный диаметр ядра dЯ (рис. 1, а), а также значения КЖ для этих режимов.
Из приведенного примера видно, что значения КЖ при уменьшении tСВ и неизменном dЯ отражают возрастающую жесткость режимов КТС, которая на практике проявляется в повышении проплавления деталей и склонности процесса к образованию выплесков.
Расчеты показателя жесткости режима КТС КЖ, проведенные по описанной выше методике для большого числа отработанных практикой режимов сварки, которые рекомендованы как наиболее оптимальные [3, 7…12, 15…17], показали следующее. Для режимов КТС, которые принято относить к режимам мягким значения показателя жесткости режима КТС КЖ 2. Для режимов, которые обычно характеризуют как режимы средней жесткости, значения показателя жесткости КЖ = 1…2.
В отличие от известных аналогов значения критерия жесткости КЖ можно рассчитать по зависимости (4.16) для любого отрезка времени ?t процесса формирования соединения. Это позволяет определить жесткость режима КТС не только усредненно для всего времени сварки tСВ, по и на отдельных этапах формирования соединения. Так, на рис. 2 показано изменение показателя КЖ в процессе формирования соединения, рассчитанное с шагом ?t = 0,01 с. В этом случае расчет КЖ производится так же, как и при ?t = tСВ, за исключением того, что переменные параметры в зависимости (4.16) последовательно принимают свои текущие значения.
Результаты расчетов текущих значений КЖ в процессе формирования точечных соединений показывают, что при КТС с неизменными значениями силы сварочного тока IСВ, и усилия сжатия электродов FЭ показатель КЖ в период времени ?t ? 0,5…0,6tСВ достигает максимальных значений. Относительно невысокие его значения в начале процесса КТС обусловлены не низкой скоростью нагрева (согласно кривой изменения ТC в этот период она максимальна), а более высокой скоростью пластического деформирования металла. Высокая скорость пластического деформирования металла, является следствием с одной стороны, высокой скорости разупрочнения металла (см. изменение K?), а с другой стороны относительно больших значений отношения в начале процесса формирования соединения. Б?льшие значения КЖ на рис. 2 в начале процесса формирования соединения обусловлены, по-видимому, допущением, что сварочный ток IСВ не меняется в течение процесса КТС. Если же учитывать реальное нарастание сварочного тока в этот период, определяемое индуктивностью сварочного контура, то изменение КЖ получается таким, как показано штриховой линией. В конце процесса, несмотря на то, что разупрочнение металла замедленно (K? ? 1,04), значения КЖ уменьшаются. Это обусловлено в основном увеличением в процессе КТС диаметра уплотняющего пояска, dП, и уменьшением теплового КПД ?Т, замедляющими рост температуры ТC.
Такое изменение показателя КЖ при формировании соединения, характерное для циклов КТС с неизменными величинами IСВ и FЭ свидетельствует о целесообразности применения циклов с программированным изменением параметров режима. В этом случае КЖ может быть использован как параметр оптимизации при определении программ изменения IСВ или FЭ. По-видимому, неслучайно и то, что при неизменных и близких к оптимальным значениях IСВ и FЭ, выплески обычно образуются в момент времени [3, 11, 15], т. е. при относительно высоких значениях КЖ.
То, что показатель жесткости КЖ в действительности комплексно отражает взаимосвязь тепловых и деформационных процессов при КТС можно подтвердить и следующим.
Выразим в зависимости (4.16) значение температуры свариваемого металла перед сваркой Т0 (K) через температуру его плавления . Поскольку при оптимальных режимах КТС в момент средние значения диаметра уплотняющего пояска приближенно ра?/p>