Основы статистики

Реферат - Математика и статистика

Другие рефераты по предмету Математика и статистика

ое отклонение и дисперсия. Размах вариации (размах колебаний)- разность между максимальным и минимальным значениями признака в совокупности. Размах вариации зависит от величины только крайних значений признака. Более точно характеризуют вариацию признака показатели, основанные на учете колеблемости всех значений признака, - среднее линейное отклонение и среднее квадратическое отклонение. Квадрат среднего квадратического отклонения называется дисперсией Для оценки интенсивности вариации, а также для сравнения ее величины в разных сов-х или по разным признакам используют относ пок-ли вариации, которые рассч-ся как отношение абсолютных пок-елей вариации к средней величине признака: относительный размах вариации (коэффициент осцилляции), относительное линейное отклонение и др. Наиболее часто на практике приним коэффициент вариации, кот. Предст. собой относ квадратическое отклонение

24. Вар. альтер признаки

 

Вар. Альтер. признаки - те которыми обладают одни единицы совок и не обладают другие. Пример: Бракованная продукция; работа по получаемой специальности. Знач. альтер. призн. обычно задается 0, если объект этим признаком не обладает, и 1 ,если объект этим признаком обладает. Пусть p=m/n доля единиц совок, обл-х признаком, а q - доля единиц совок, не обл-х этим призн p + q=1. Тогда ср знач. Альтер. призн: Макси знач. дисперсии max=0,25 при р=0,5. Обобщ хар различий внутри ряда служит энтропия распределения. ОПР: Энтропия- мера неопр-сти данных наблюдений. Она зависит от числа проявл-ся признака и от вероятности каждого из них. где рi вероятности различных знач. случ. величин. Если все варианты равновероятны, то энтропия максимальна.

 

25. Виды дисперсий

 

1) Общая дисперсия 2) Межгрупповая дисперсия (Характеризует вариацию изучаемого признака, возникающую под влиянием признака-фактора, положенного в основание группировки) 3) Внутригрупповая дисперсия(отражает часть вариации, происходящей под влиянием неучтенных факторов, которая не зависит от группировочного признака) Средняя из внутригрупповых дисперсий по совокупности в целом - вариация значений признака под влиянием прочих факторов. Правило сложения дисперсий: общая дисперсия, кот возникает под влиянием всех факторов, равна сумме средней из внутригрупповых и межгрупповой

 

26. .Изучение формы распр-ния.

 

Процедура выравнивания, сглаживания анализируемого распределения заключается в замене эмпирических частот теоретическими, определяемыми по формуле теоретического распределения, но с учетом фактических значений переменной. На основе сопоставления эмпирических и теоретических частот рассчитываются критерии согласия, которые используются для проверки гипотезы о соответствии исследуемого распределения тому или иному типу теоретических распределении.

Выбор конкретного типа модельного распределения осуществляется исходя из самых общих соображений, опирающихся на визуальный анализ построенных графиков распределения. В практическом анализе обязательной является проверка соответствия изучаемого распределения нормальному закону распределения. Необходимость этого связана с тем, что условием применения значительного числа статистических характеристик и оценок является наличие нормального распределения.

Функция нормального распределения:

 

,

 

плотность нормального распределения:

 

,

 

где значение изучаемого признака, - средняя арифметическая величина, - среднее квадратическое отклонение изучаемого признака, e, ? математические константы, нормированное отклонение.

Теоретические частоты нормального отклонения рассчитываются по следующей формуле:

 

,

где N объём совокупности, hk величина интервала. В моём случае вариационный ряд построен с использованием равных интервалов, следовательно:

 

.

 

Принятие решения о справедливости гипотезы о законе распределения можно осуществить, ориентируясь на эмпирическое значение критерия , который сравнивается с табличным значением . Окончательные выводы по проверке гипотезы о законе распределения: так как , то гипотеза о нормальном распределении регионов России по числу собственных легковых автомобилей на 1000 человек населения в 1990 г. не противоречит истине.