Основы программирования на языке Паскаль

Методическое пособие - Компьютеры, программирование

Другие методички по предмету Компьютеры, программирование

алось бы, правильно написанная программа дает результат S=-12250. Как может получиться отрицательный результат при суммировании квадратов заведомо положительных чисел? Такой результат мы получаем путем суммирования и занесения результатов в ячейку S типа integer, а в integer могут быть помещены числа в диапазоне -32768 +32767, поэтому после переполнения ячейки памяти в знаковый разряд переносится 1, которая интерпретируется машиной как -. Чтобы этого избежать, можно описать S как longint. Тогда результат работы программы будет правильный и равен 643110.

Program Prim12a; Var i,s:longint;

BEGIN s:=0;

for i:= 8 to 124 do

s:=s+sqr(i);

writeln(s=,s);

readln; END.

Можно также описать S как real. Program Prim12b; Var i:integer; s:real;

BEGIN s:=0;

for i:= 8 to 124 do

s:=s+sqr(i);

writeln(s=,s);

readln;

END.

Результат работы этой программы будет равен 6.4311000000E+05, что то же самое, что и 643110, если считать, что запись 6.4311000000E+05 равносильна математической записи 6,431110+5.

Правила применения оператора цикла for

1.Тело цикла - всегда один оператор. Если нужно, чтобы тело цикла состояло из нескольких операторов, то их объединяют в один с помощью операторных скобок begin, end.

for i:=l to n do

Begin S:=S+sin(x)/cos(x);

x=x+0.01;

writeln(S= ,S)

end.

Операторы, взятые в операторные скобки begin, end, считаются одним составным оператором.

2. Начальное и конечное значения параметра цикла в общем случае являются выражениями. Тип этих выражений и тип параметра цикла должны совпадать. Здесь допускается применение любых типов, которые упорядочены с каким-либо фиксированным шагом, это может быть любой скалярный тип, кроме вещественного, т.е. байтовый, целый, символьный, перечисляемый, интервальный, булевский. на практике чаще всего применяют целочисленный тип.

3. В теле цикла параметр цикла не должен изменяться.

4. Нельзя с помощью оператора перехода goto войти в тело цикла, минуя заголовок.

5. Выйти из тела цикла в программу можно по if..goto, не дожидаясь полного перебора параметров цикла.

Пример: написать программу, выводящую буквы латинского алфавита в одну сторону, с пробелом между ними.

Применяем здесь в качестве параметра цикла символьную переменную, в качестве начального значения параметра константу A, конечного Z.

Program Prim13;

Var

i:char;

BEGIN

for i:=a to z do

write( ,i);

readln; END.

Пример: вычислить значение определенного интеграла на участке a,b для функции cos х, т.е. определить площадь, заштрихованную на рис. 4.1.

 

 

 

 

 

 

 

 

Применим метод трапеций, суть которого заключается в том, что область делится на ряд трапеций, площади которых вычисляются и суммируются. Чем на большее количество трапеций мы разделим область, тем точнее получим результат (см.рис.4.2).

 

 

 

 

 

 

 

 

Program Prim14;

Var i,n:integer; a,b,x,h,s:real;

BEGIN writeln( введите к-во точек разбиения n и величины а, b);

readln(n,a,b);

h:=(b-a)/n; s:=0; x:=a;

for i:=1 to n do

Begin s:=s+(abs(cos(x))+abs(cos(x+h)))/2*h;

x:=x+h; end;

writeln(s=,s);

readln; END.

Замечание: при вычислении S (так как функция пересекает ось OX) часть площадей может иметь отрицательное значение, поэтому мы берем abs(f(x)).

Усложним задачу: пусть нужно найти площадь криволинейной трапеции (интеграл), где функция от точки а до b sin(x), а после b до с cos(x).

Program Prim15;

Var i,n:integer; a,b,c,x,h,s,fxpred,fxposl:real;

BEGIN writeln(введите к-во точек разбиения n и величины а, b, c);

readln(n,a,b,c);

h:=(c-a)/n; s:=0; x:=a;

for i:=1 to n do

Begin

{ определимся, по какой из функций считать стороны трапеций }

if (x>=a) and (x<=b) then fxpred:= abs(sin(x)) else

fxpred:=abs(cos(x));

if (x+h>=a) and (x+h<=b) then fxposl:= abs(sin(x+h)) else

fxposl:=abs(cos(x+h));

s:=s+(fxpred+fxposl)/2*h;

x:=x+h; end;

writeln(s=,s);

readln; END.

В последних двух программах мы заменяем площадь криволинейной трапеции (интеграл) суммой трапеций. При этом нам неизвестно, какую ошибку мы допустим; знаем, что чем больше точек разбиения, тем точнее будет результат. Поставим задачу: совершенно точно знать, что мы посчитаем интеграл с точностью не менее заданной, например, что разность между площадью криволинейной трапеции и суммой прямоугольных трапеций будет не больше Е = 0.01. Для этого нам нужно посчитать результат для количества точек, например 10, затем 100. Сравнить величины площадей, и, если их разность будет меньше Е, то можно с уверенностью сказать, что площадь для разбиения на 100 интервалов будет найдена с точностью не менее Е. Если разность между расчетами на 10 и 100 интервалов больше Е, то следует разбить область интегрирования на 1000 интервалов и сравнить сумму для 100 интервалов с суммой для 1000 интервалов, и если их разница будет меньше Е, то за результат принять площадь, посчитанную для 1000 разбиений и т.д. рано или п?/p>