Основные этапы разработки имитационной модели (на примере модели банковского отделения)
Дипломная работа - Менеджмент
Другие дипломы по предмету Менеджмент
бходимость повторять раiет итоговых параметров модели определенное число раз, которое находится заранее по разработанной методике. Целью повторений является имитация различных вариантов возможных погодных условий микрозоны.
Основные задачи прогнозирования экономической эффективности адаптивно управляемых систем решаются с помощью имитационных моделей. Главными проблемами здесь являются моделирование стохастичности, несущее много черт чисто математической задачи, которую необходимо правильно поставить. Только после этого можно приступить к раiету обоснованных результатов моделирования.
Основой для построения стохастических функций являются их математические ожидания и среднеквадратические отклонения, имеющие распределение, которое в задачах моделирования принималось аналогично близким к нормальному. Для нас особый интерес представляет метод получения нормального распределения при помощи стандартного датчика случайных чисел.
Случайная величина с нормальным распределением описывается двумя параметрами: математическим ожиданием и стандартным отклонением. Датчик случайных чисел выдаёт равномерно распределённое число в интервале от 0 до 1. Для описания имитационного процесса весьма актуален вопрос выбора языка программирования. Хотя теоретически возможно описать модель на любом из широко распространенных универсальных проблемных языков Фортране, PL/1, Паскале, но опыт развития теории и практики имитационного моделирования в нашей стране и за рубежом показывает, что наиболее эффективным средством являются специальные имитационные языки, которых к настоящему времени создано уже немало и многие из них эффективно используются, особенно за рубежом, где ни один крупный проект не реализуется без проверки на имитационной модели. Наиболее известны языки: GPSS, GASP, SIMSCRIPT и DYNAMO, реализующие различные подходы к моделированию.
Выбор языка моделирования влечёт за собой принятие концепции авторов языка, что не может не сказаться на стратегии разработки, построения и совершенствования модели, ибо этот процесс существенно зависит от гибкости и мощности изобразительных средств языка, ресурсов, предоставляемыми пользователю.
Для моделирования на ЭВМ сложной системы нужен аппарат программирования, предусматривающий:
способы организации данных, обеспечивающие простое и эффективное моделирование;
удобные средства формализации и воспроизведения динамических свойств моделируемой системы;
возможности имитации стохастических систем, т.е. процедуры генерирования и анализа случайных величин и временных рядов.
Реализация требований к имитационным моделям в рамках универсального языка программирования приводит к громоздким и неудобным для практического использования программам. В большинстве таких программ могут разобраться только их авторы, а любое изменение в постановке задачи требует переработки значительной части текста программы.
2. Метод Монте-Карло
имитационный моделирование банк программа
При исследовании сложных систем, подверженных случайным возмущениям используются вероятностные аналитические модели и вероятностные имитационные модели.
В вероятностных аналитических моделях влияние случайных факторов учитывается с помощью задания вероятностных характеристик случайных процессов (законы распределения вероятностей, спектральные плотности или корреляционные функции). При этом построение вероятностных аналитических моделей представляет собой сложную вычислительную задачу. Поэтому вероятностное аналитическое моделирование используют для изучения сравнительно простых систем.
Подмечено, что введение случайных возмущений в имитационные модели не вносит принципиальных усложнений, поэтому исследование сложных случайных процессов проводится в настоящее время, как правило, на имитационных моделях.
В вероятностном имитационном моделировании оперируют не с характеристиками случайных процессов, а с конкретными случайными числовыми значениями параметров ПС. При этом результаты, полученные при воспроизведении на имитационной модели рассматриваемого процесса, являются случайными реализациями. Поэтому для нахождения объективных и устойчивых характеристик процесса требуется его многократное воспроизведение, с последующей статистической обработкой полученных данных. Именно поэтому исследование сложных процессов и систем, подверженных случайным возмущениям, с помощью имитационного моделирования принято называть статистическим моделированием.
Статистическая модель случайного процесса - это алгоритм, с помощью которого имитируют работу сложной системы, подверженной случайным возмущениям; имитируют взаимодействие элементов системы, носящих вероятностный характер.
При реализации на ЭВМ статистического имитационного моделирования возникает задача получения на ЭВМ случайных числовых последовательностей с заданными вероятностными характеристиками. Численный метод, решающий задачу генерирования последовательности случайных чисел с заданными законами распределения, получил название "метод статистических испытаний" или "метод Монте-Карло".
Так как метод Монте-Карло кроме статистического моделирования имеет приложение к ряду численных методов (взятие интегралов, решение уравнений), то целесообразно иметь различные термины.
Итак, статистическое моделирование - это способ изучения сложных процессов и систем, подверже