Информация по предмету Геодезия и Геология
-
- 261.
Основные свойства и состав почвы
Другое Геодезия и Геология Почва представляет собой сложную природную систему, где под влиянием живых организмов и других факторов происходят образование и разрушение сложных органических соединений. Минеральные вещества извлекаются растениями из почвы, входят в состав их собственных органических соединений, затем включаются в органические вещества тела сначала растительноядных, затем насекомоядных, хищных животных. После гибели растений и животных их органические соединения поступают в почву. Под воздействием микроорганизмов в результате сложных многоступенчатых процессов разложения эти соединения переходят в формы, доступные для усвоения растениями. Они частично входят в состав органических веществ, задерживаются в почве или удаляются с фильтрующимися и сточными водами. В результате происходит закономерных круговорот химических элементов в системе "почва - растения - (животные - микроорганизмы) - почва". Этот круговорот В.Р. Вильямс назвал малым, или биологическим. Благодаря малому круговороту веществ в почве постоянно поддерживается плодородие. В искусственных агроценозах такой круговорот нарушен, так как человек изымает значительную часть сельскохозяйственной продукции, используя ее для своих нужд. Из - за неучастия этой части продукции в круговороте почва становится малоплодородной. Чтобы избежать этого и повысить плодородие почвы в искусственных агроценозах, человек вносит органические и минеральные удобрения. Применяя необходимые севообороты, тщательно обрабатывая и удобряя почву, человек повышает ее плодородие столь значительно, что большинство современных обрабатываемых почв следует считать искусственными, созданными при участии человека. Таким образом, в одних случаях воздействие человека на почвы приводит к повышению их плодородия, в других - к ухудшению, деградации и гибели.
- 261.
Основные свойства и состав почвы
-
- 262.
Основные технологические процессы на разрезе "Томусинский"
Другое Геодезия и Геология Число экскаваторов на уступе может быть различным, однако при использовании мощного оборудования желательно иметь на уступе один экскаватор, производительность которого равняется запланированному объему работ. Это позволяет улучшить организацию работ на уступе и способствует повышению производительности оборудования. При малой длине фронта работ и небольшой скорости его подвигания возникает необходимость отработки группы уступов одним экскаватором, что связано с периодической перестройкой транспортных коммуникаций. Перегон экскаваторов (особенно мощных) с уступа на уступ связан со снижением их производительности и нежелателен по техническим причинам. При работе на уступе двух экскаваторов и более фронт работ уступа делится на отдельные экскаваторные блоки, длина которых для экскаваторов ЭКГ-5 и ЭКГ-8 составляет 500-600 и 1000-1400 м соответственно при использовании автомобильного и железнодорожного транспорта. Скорость подвигания фронта работ зависит от мощности оборудования, мощности залежи, производительности карьера и других факторов и изменяется в пределах 30-250 м в год. Обычно годовая скорость подвигания фронта работ изменяется в пределах 40-140 м. Рабочая зона карьера - это зона, в которой осуществляются вскрышные и добычные работы. Она характеризуется совокупностью вскрышных и добычных уступов, одновременно находящихся в работе. Положение рабочей зоны определяется высотными отметками рабочих уступов и длиной их фронта работ. Рабочая зона представляет собой перемещающуюся и изменяющуюся во времени поверхность, в пределах которой осуществляются работы по подготовке и выемке горной массы. Она может охватывать один, два или все борта карьера. При строительстве карьера рабочая зона, как правило, включает только вскрышные уступы, а к окончанию горно-капитальных работ - и добычные. Число вскрышных, добычных и горно-подготовительных забоев в рабочей зоне не может устанавливаться произвольно, так как от этого зависит выполнение планов по отдельным видам работ. В рабочей зоне карьера каждый экскаватор в процессе работы занимает определенную горизонтальную площадь Sб, которая характеризуется шириной В рп рабочей площадки и длиной Lб экскаваторного блока. Обычно S6 = 20/40 тыс. м2 при железнодорожном транспорте и S6=5/20 тыс.м2 при автомобильном транспорте. Число экскаваторных блоков, которое может разместиться в рабочей зоне карьера, определяется по формуле (3.2)
- 262.
Основные технологические процессы на разрезе "Томусинский"
-
- 263.
Основные характеристики планеты
Другое Геодезия и Геология Воды, выпавшие в виде атмосферных осадков на континент, частично испаряются. Часть их формирует ручьи, реки, накапливается в виде льда и снега в зонах сурового климата, фильтруется в землю, образуя ниже земной поверхности залежи подземных вод. И вода, и снег, и лед выполняют огромную разрушительную работу, в результате которой горные породы измельчаются и испытывают глубокое преобразование изначального минерального и химического состава. И твердые обломки, и растворенное вещество транспортируются к месту их накопления (аккумуляции). Таким образом, все экзогенные процессы осуществляются по схеме: разрушение транспортировка аккумуляция. Основными экзогенными процессами являются геологическая деятельность ветра, рек, дождевых, талых и подземных вод, морей, океанов, озер, болот, ледников, а также процессы, осуществляющиеся в мерзлых породах. В разрушительную стадию всех перечисленных процессов создается осадочный материал, который накапливается как на суше, так и в водоемах, причем в водоемах аккумулируется большая его часть. Осаждаясь на дне водоемов, осадочный материал формирует осадочную толщу. Это процесс осадконакопления, или седиментации. В составе осадочной толщи различаются отдельные слои. Каждый слой фиксирует какие-либо изменения в условиях накопления осадочной толщи.
- 263.
Основные характеристики планеты
-
- 264.
Основные этапы становления и развития исторической геологии
Другое Геодезия и Геология Крупнейший французский ученый Ж. Кювье был не только од ним из основателей палеонтологического метода, но и автором теории катастроф, которая в свое время пользовалась широкой популярностью. На основании геологических наблюдений он по казал, что некоторые группы организмов в течение геологического времени вымирали, но их место занимали новые. Его последователи Ж.Агассис (1807 1873), А.д'Орбиньи (18021857), Л.Эли де Бомон (17981874) и другие стали объяснять катастрофами не только вымирания организмов, но и многие другие события, происходящие на земной поверхности. По их мнению, любые изменения залегания горных пород, рельефа, изменения ландшафтов или условий среды обитания, а также вымирание организмов были результатами разномасштабных катастрофических явлений, про исходивших на земной поверхности. Позднее теория катастроф была подвергнута резкой критике выдающимися учеными XIX в. Ж.Ламарком (17441829), Ч.Лайелем (1797 1875), Ч.Дарвином (1809 1882). Французский естествоиспытатель Ж.Ламарк создал учение об эволюции органического мира (ламаркизм) и впервые провозгласил ее всеобщим законом живой природы. Английский геолог Ч. Лайель в своем труде «Основы геологии» доказывал, что крупные изменения на Земле происходили не в результате разрушительных катастроф, а вследствие медленных, длительных геологических процессов. Познание истории Земли Ч. Лайель предлагает начинать с изучения современных геологических процессов, считая, что они являются «ключом к познанию геологических процессов прошлого». Это положение Ч.Лайеля получило впоследствии название принципа актуализма. Появление трудов Ч. Дар вина оказало большую поддержку учению эволюционистов, так как в них доказывалось, что органический мир преобразуется путем медленных эволюционных изменений.
- 264.
Основные этапы становления и развития исторической геологии
-
- 265.
Основы геологии
Другое Геодезия и Геология Форма и размеры астроблем, характер преобразования в них пород земной коры являются результатом ударного метаморфизма - процесса своеобразного, совершенно не похожего на другие геологические процессы, происходящие на Земле (и на других планетах Солнечной системы). Метаморфизм развивается при соударениях космических тел друг с другом. При этом в момент удара давление на горные породы достигает нескольких гигапаскалей, а температура измеряется десятками тысяч градусов. Такие параметры являются следствием реализации при ударе очень высоких энергий за крайне малое время. Энергия соударения космического тела с поверхностью планеты зависит от его массы и скорости. Скорость сближения двух тел (для Земли и астероида) лежит в пределах от 11,2 до 72,8 км /сек. Минимальная величина определяется второй космической скоростью, а максимальная - векторной суммой второй космической скорости, скорости вращения Земли вокруг Солнца и скорости метеорного тела вдали от Земли. Мощная и плотная атмосфера тормозит космическое тело тем сильнее, чем больше его диаметр, так как оно перемещает впереди себя газ, сжимая его и постепенно затормаживаясь. Если уплотненная масса газа (М) достаточно велика (при М газа > 10М метеорита скорость движения падает на 90% и более), то скорость соударения приближается к нулю. В Намибии (Южная Африка) на поверхности земли лежит железный метеорит Хоба, вес которого около 60 т. Ни кратера, ни даже лунки при его падении не образовалось - метеорит приземлился как бы на воздушной подушке, скорость соударения была практически нулевой. При скоростях соударения до 3-5 км /сек. образуются ударные кратеры (лунки, воронки, по размеру соответствующие метеориту-ударнику). Породы мишени дробятся и выбрасываются из воронки, распределяясь равномерно вокруг нее при вертикальном падении или вперед по направлению падения при ударе под углом. При больших скоростях соударения происходит взрыв. Причинами взрыва являются резкое торможение космического тела при столкновении и переход кинетической энергии движущегося тела частично в механическую, частично в тепловую. Суммарная энергия, реализуемая в процессе соударения, может превышать 10^19-10^23 Дж.. Если сравнить эту величину с энергией катастрофических вулканических извержений (1,44 x 10^20 Дж при извержении вулкана Тамбора в 1815 году или 1,81 x 10^19 Дж для вулкана Кракатау в 1883 году), то она примерно того же порядка. Однако результаты вулканического взрыва и импактного события совершенно несопоставимы. Это связано с тем, что в вулканическом процессе энергия расходуется не одномоментно, а в серии следующих друг за другом пароксизмов на протяжении 1х10^3 - 1х10^5 сек. В импактном процессе реализация кинетической энергии космического тела занимает промежуток времени от нескольких миллиардных долей секунды до первых секунд (тем дольше, чем больше суммарная энергия). Такая высокая плотность энергии определяет колоссальные градиенты параметров (давления и температуры) и как следствие - очень большие скорости протекания механических и тепловых процессов. Например, скорость механического деформирования пород в эндогенных геологических процессах составляет 1х10^-13 - 1х10^-16 м./сек., а при импактных соударениях 1х10^3 - 1х10^4 м./сек, то есть на 17-20 порядков больше. Резкое торможение космического тела при столкновении его с поверхностью планеты приводит к возникновению ударной волны сжатия, которая движется от точки столкновения вперед (в породах мишени - земной коры) и назад (в веществе ударника - космического тела). Сила сжатия при этом может составлять 100-300 ГПа, а время достижения максимальной величины сжатия измеряется первыми миллиардными долями секунды (n " 10- 9 с). Сжатие естественно вызывает нагрев вещества до нескольких десятков тысяч градусов за столь же краткие промежутки времени. Чем больше общая энергия соударения, тем дольше вещество останется в сжатом состоянии (от нескольких наносекунд до первых секунд).
- 265.
Основы геологии
-
- 266.
Особенности вулканизма и геодинамика области тройного сочленения Буве
Другое Геодезия и Геология На вариационных диаграммах, отображающих поведение элементов-примесей, вулканиты острова Буве имеют более высокие отношения Nb/Zr и Zr/Y, чем таковые хребта Шписс. Эта разница может быть обусловлена как различием в составе мантийного источника, так и процессами фракционной кристаллизации, так как анализировались в основном сильно дифференцированные разности. Некоторые различия между вулканитами Буве и Шписс следуют также из данных по их изотопии [Сущевская и др., 1999; Kurz et al., 1998]. Вулканиты острова Буве характеризуются довольно высокими содержаниями радиогенных изотопов стронция (87Sr/86Sr 0,70371) и свинца (206 Pb/204Pb 19,588), что резко отличает их от деплетированных базальтов, в частности, южного окончания САХ (соответственно 0,70323-0,70338 и 18,037-18,932). Вулканиты хребта Шписс имеют в основном низкие значения 87Sr/86Sr (0,70329-0,70336) на уровне деплетированных MORB, хотя у отдельных образцов оно более высокое (0,70349), и промежуточные значения 206Pb/204Pb (19,010-19,244). В вулканитах острова Буве определены высокие значения радиоактивного гелия (3He/4He 12,4), которые уменьшаются по мере удаления от острова. Повышенные значения радиоактивного гелия в вулканитах острова Буве в совокупности с высокими содержаниями радиогенных изотопов стронция и свинца в них указывают на то, что их первичные расплавы связаны с плюмом глубинной обогащенной мантии. В то же время вулканиты хребта Шписс характеризуются очень низкими отношениями 3He/4He (2,15-7,44), в целом даже более низкими, чем в деплетированных базальтах САХ (7,11-7,66) [Kurz et al., 1998]. Таким образом, если следовать имеющимся представлениям о генетической роли изотопных и геохимических параметров, то невозможно предложить непротиворечивую модель образования вулканитов хребта Шписс. С одной стороны, содержания калия, фосфора, титана, ряда литофильных элементов-примесей в них близки к таковым в вулканитах острова Буве, плюмовая природа которых, как показано выше, подтверждается многими данными. С другой стороны, их изотопные характеристики отличаются. Изотопия стронция близка к деплетированным толеитам, изотопия свинца занимает промежуточное положение между деплетированными базальтами и вулканитами острова Буве, а для того чтобы объяснить очень низкие значения радиоактивного гелия необходимо предположение либо о разбавлении исходных расплавов компонентом, обогащенным радиогенным гелием, либо о ранней дегазации мантийного источника. В работе Н.М.Сущевской с соавторами [Сущевская и др., 1999] делается интересное предположение о том, что вулканиты хребта Шписс произошли в результате плавления метасоматизированной гетерогенной мантии, образовавшейся на более раннем этапе рифтогенеза. Возможность ее сохранения в современных осевых частях спрединговых хребтов следует из сложной геодинамики раскрытия этой части Южного океана. Привлечение метасоматизированной мантии в качестве магматического источника объясняет некоторую обогащенность вулканитов хребта Шписс радиогенными изотопами и низкие значения радиоактивного гелия. Хотя идея о возможности нахождения метасоматизированной мантии в данном регионе не вызывает возражений, все же имеется ряд, прежде всего, геологических фактов, не позволяющих полностью принять эту точку зрения. Хребет Шписс начал формироваться около 2-2,5 млн лет назад, а собственно сам вулкан Шписс около 1млн лет назад, когда крайний отрезок АфАХ уже существовал, время начала его образования около 10 млн лет назад [Ligi et al., 1999]. На ранних этапах существования этого сегмента АфАХ в его осевой части изливались преимущественно деплетированные базальты, о чем свидетельствуют данные по составу базальтов станций G9620 и G9621, находящихся на западном фланге этого сегмента.
- 266.
Особенности вулканизма и геодинамика области тройного сочленения Буве
-
- 267.
Особенности геологического картирования в районах развития вулканогенно-осадочных толщ
Другое Геодезия и Геология Для выявления складчатых структур, развитых в вулканогенных толщах, как и для осадочных пород, большое значение при геологической съемке имеет изучение границ между разновозрастными свитами, для чего нужно обязательно прослеживать и изучать их контакты. Особенно необходимо внутри толщ прослеживать по простиранию отдельные покровы эффузивов, туфолав и пласты туфов, имеющих характерные отличительные признаки и большую протяженность. Это позволит установить не только характер складок и их структурные элементы, но и большинство разрывных нарушений. Пи картировании складчатых структур надлежит изучать форму и размеры складок в различных структурных этажах и в различных частях района, поведение пород с различными физическими свойствами по отношению к складчатости, связь со складчатостью разрывных нарушений, кливажа и сланцеватости, роль ранее образованных структур при формировании более молодых и т.д. Для этих целей выделяются и прослеживаются все маркирующие горизонты и особенно осадочные породы, прослеживание которых по простиранию нередко представляет единственную возможность разобраться в характере складчатой структуры однообразных по составу вулканогенных толщ и в их строении.
- 267.
Особенности геологического картирования в районах развития вулканогенно-осадочных толщ
-
- 268.
Особенности интерпретации данных газового каротажа при исследовании глубоких скважин
Другое Геодезия и Геология Суммарная концентрация углеводородных газов, %Концентрация CH4-С3H8, %Относительный состав газа, %CH4C2H6С3H8Поплавковый дегазатор0,250,19078,915,85,30,350,22571,121,87,10,700,29079,317,23,50,750,44072,719,87,51,100,49082,112,25,71,200,56071,419,69,0Дегазатор Geoservices2,21,1687,98,63,53,71,4580,115,24,74,61,5481,914,63,55,51,5973,620,75,37,53,9488,89,12,19,45,3084,99,45,7Исследования, проведенные Л. А. Галкиным [7], показали, что изменение состава УВГ может происходить и в процессе транспортировки ГВС по газовоздушной линии из дегазатора до хроматографа при использовании полихлорвиниловой трубки. Полихлорвинил имеет свойство сорбировать тяжелые углеводороды, а при нагревании отдавать их, т. е. десорбировать. Поэтому, особенно весной и летом, при резких перепадах положительных температур, наблюдаются изменения относительного состава извлекаемой из ПЖ газовоздушной смеси (при росте температуры - увеличение доли в ГВС тяжелых углеводородов). Для получения достоверной информации о составе газа необходимо применять трубку из материала, не сорбирующего углеводороды, или осуществлять подогрев газовоздушной линии на всем ее протяжении до постоянной определенной температуры (+20 ÷ +40 °С). При использовании трубки ПВХ необходимо учитывать возможные искажения состава углеводородных газов (особенно при низких фоновых значениях УВГ).
- 268.
Особенности интерпретации данных газового каротажа при исследовании глубоких скважин
-
- 269.
Особенности неогенового периода
Другое Геодезия и Геология Первопричиной столь активной перестройки на континентах явилось продолжавшееся перемещение и столкновение крупных литосферных плит. В неогеновом периоде завершилось формирование современного облика океанов и береговой зоны континентов. Соприкосновение жестких литосферных плит привело к образованию горных хребтов и массивов. Так, в результате столкновения Индостанской плиты с Евразией появилась мощная горная система Гималаев. Перемещение Африки в северном направлении и ее столкновение с Евразией привело к сокращению ранее обширного океана Тетис и формированию высоких гор, окружающих современное Средиземное море (Атлас, Пиренеи, Альпы, Карпаты, Крым, Кавказ, Эльбурс, горные системы Турции и Ирана). Этот огромный горно-складчатый пояс, известный под названием Альпийско-Гималайского, протягивается на расстояние нескольких тысяч километров. Формирование этого пояса еще далеко до завершения. До настоящего времени здесь происходят сильные тектонические движения. Свидетельством этого являются частые землетрясения, извержения вулканов и медленное увеличение высот горных хребтов.
- 269.
Особенности неогенового периода
-
- 270.
Особенности образования и строения горных пород
Другое Геодезия и Геология Интрузивные залежи (силлы) образуются путем внедрения магмы вдоль плоскостей слоистости. При этом магма играет активную роль - породы кровли отделялись от пород почвы залежи под действием сил, передававшихся расплавом. Глубина образования интрузивных залежей различная и может быть значительной. Известны интрузивные залежи площадью до 13 ООО км2. Мощность интрузивных залежей варьирует от самых тонких, микроскопических инъекций до 600 м. Характерным типом интрузивных залежей являются внедрения основных магм в горизонтально лежащие морские осадки в подводной обстановке, в геосинклинальных трогах. Таковы, например, диабазовые интрузивные залежи в толщах юрских глинистых сланцев Кавказа. Они представляют межпластовые тела мощностью от немногих сантиметров до десятков метров. Другим характерным типом интрузивных залежей являются внедрения магм, разнообразных по составу, основных и кислых, в разновозрастные породы, иногда значительно более древние, принадлежащие другим геологическим системам. Таковы кислые межпластовые интрузии Рудного Алтая, знаменитые траппы Тунгусского бассейна в Сибири (Лебедев, 1955), долериты Карру в Южной Африке и многие другие. Лакколиты - караваеобразные магматические тела, образующиеся на сравнительно небольшой глубине от поверхности. Силой присущего им интрузивного динамического воздействия в период внедрения, магмы приподнимают вышележащие породы в форме купола. При этом приподнимание может быть настолько интенсивным, что породы кровли по краям лакколита поставлены на голову и даже опрокинуты с образованием местных разрывов. Часто лакколиты представляют многофазные полигенные интрузии, формировавшиеся длительное время в результате внедрений магм, различающихся по петрографическому составу. Известной областью распространения лакколитов является район Кавказских минеральных вод. Здесь лакколиты залегают на разных уровнях стратиграфической колонки вмещающих пород, от мела и палеогена до Майкопа включительно, имеющих мощность более 2000 м.
- 270.
Особенности образования и строения горных пород
-
- 271.
Особенности проведения геолого-технологических исследований при выделении маломощных нефтенасыщенных пластов
Другое Геодезия и Геология Однако газонасыщенность промывочной жидкости не остается постоянной и резко уменьшается при выходе промывочной жидкости из затрубного пространства в желобную систему и при движении жидкости по желобу. На рис. 1 приведены данные экспериментальных исследований, проведенные Снарским К.Н. по изучению изменения газонасыщенности промывочной жидкости в процессе движения ее из скважины к виброситу. В процессе эксперимента производился отбор проб промывочной жидкости из затрубного пространства до выхода ее на поверхность, на устье скважины и в желобной системе на различных расстояниях от устья скважины (1, 2, 3 и 4 м). Отобранные пробы подвергались термовакуумной дегазации на термовакуумной установке, проводился раздельный анализ извлеченной газовой смеси на хроматографе ХГ-1Г, рассчитывались газонасыщенность промывочной жидкости q углеводородными газами и концентрации метана, этана, пропана, бутана, пентана и гексана.
- 271.
Особенности проведения геолого-технологических исследований при выделении маломощных нефтенасыщенных пластов
-
- 272.
Особенности разведки и оценки месторождений никеля
Другое Геодезия и Геология На завершающих этапах стадии предварительной разведки при получении необходимых и достаточных данных для однозначной оценки промышленного значения выявленного объекта, который может быть либо признан промышленным, заслуживающим детальной разведки и последующего освоения, либо забракован, осуществляется его предварительная геолого-экономическая оценка. Для обоснования предварительной оценки месторождения выполняется многовариантный подсчет его запасов по категориям C1 и С2, на основании которого составляются технико-экономический доклад (ТЭД) и временные кондиции, утверждаемые для месторождений цветных металлов Минцветметом СССР. Положительный ТЭД и установленные временные кондиции используются для текущего планирования приростов запасов цветных металлов и оперативных подсчетов запасов месторождений, утверждаемых ЦКЗ Мингео СССР. Для объектов, имеющих важное народнохозяйственное значение (либо в спорных случаях), ТЭД и временные кондиции рассматриваются и утверждаются ГКЗ СССР. ТЭДы и временные кондиции составляются производственными геологическими объединениями совместно со специализированными научно-исследовательскими или проектными организациями с помощью прямых или укрупненных технико-экономических расчетов с использованием данных по аналогичным разведанным или эксплуатируемым месторождениям. Положительно оцененные объекты зачисляются в резерв или подвергаются дальнейшим исследованиям с непосредственным (без перерыва во времени) переходом от их предварительной разведки к детальной. По сложным объектам (3-я группа), детальная разведка которых в основном производится одновременно с их эксплуатацией, подсчет запасов представляется на утверждение ГКЗ СССР, после чего принимается решение об их освоении разведочно-эксплуатационным предприятием. Соответственно и требования к обоснованию ТЭДов и кондиций для этих объектов должны быть повышенными. При необходимости на месторождениях 3-й группы проводится небольшой объем дополнительных работ с целью получения всех данных для проектирования разведочно-эксплуатационного предприятия.
- 272.
Особенности разведки и оценки месторождений никеля
-
- 273.
Особенности, ценность и добыча яшмы
Другое Геодезия и Геология До рубежа XVIII-XIX вв. в камнеобрабатывающей промышленности не было никаких механизмов и всю обработку вели вручную. Твердый камень сортировали по величине кусков, окраске и рисункам и обивали. Затем каменные болванки распиливали на части пилой с подсыпкой под нее абразивного порошка. Круглые отверстия в камне высверливали при помощи трубки из мягкого железа с тем же абразивом. Молоток, долото, напильники-были основными инструментами мастера-каменщика. Обработанные вчерне изделия шлифовали тяжелыми чугунными гладилками, под которые насыпали абразивный порошок. Во время шлифовки поверхность камня поливали водой; перетертые частицы камня смешивали с абразивным порошком, образуя так называемый шлам, его собирали и снова употребляли для шлифовки. После шлифовки каменное изделие подвергали полировке. Перед полировкой все трещины и поры в камне, оставшиеся после обработки, тщательно заделывали подобранной под цвет камня мастикой; камень промывали водой и протирали тряпкой. Для того чтобы придать готовому изделию зеркальный блеск, его посыпали полировальным порошком - крокусом или трепелом (крокус абразивный материал Fe2O4; трепел - кремневая горная мука, состоящая из аморфного кремнезема и измельченных скелетов микроорганизмов) и терли "куклой" войлочной подушкой.
- 273.
Особенности, ценность и добыча яшмы
-
- 274.
От богатства к упадку и вновь к процветанию, или История залива Зуин и портов Брюгге
Другое Геодезия и Геология Менее чем за сто лет бельгийское побережье, включая Зебрюгге, преобразилось коренным образом. Традиционные направления экономики здешней береговой зоны - рыболовство, охота на китов (вошедшая ныне в предания), а позже сельское хозяйство. Многочисленные рыболовецкие хозяйства пришли в упадок в XX в., в то время как туризм стал основным источником жизни местного населения. Вместо вереницы рыбачьих деревень, расположенных между дюнами и польдерами, очень близко к береговой линии, появились фешенебельные места отдыха на воде, а позднее, вслед за возникновением порта и промышленным развитием береговой зоны, - города-курорты. Привлекательность местного туризма возросла, когда в 1912 г. параллельно побережью была построена узкоколейная железная дорога, впоследствии электрифицированная. К тому же к середине XX в. количество туристов увеличилось, поскольку появились оплаченные отпуска, и теперь отдых на море могут позволить себе не только богатые люди. В последние годы прибавился так называемый туризм выходного дня - поездки на побережье на собственных автомобилях. В целом, если население Бельгии за 1860-1970 гг. выросло примерно в 1.5 раза, то население прибрежной зоны - почти в 3 раза, а самый близкий к Зуину город - Кнокке-Хейст - увеличился в 10 раз.
- 274.
От богатства к упадку и вновь к процветанию, или История залива Зуин и портов Брюгге
-
- 275.
Оценка естественных ресурсов
Другое Геодезия и Геология Самый сложный вопрос - как оценить область потенциальной инверсии естественной разгрузки при работе водозабора? Ведь только эту часть ЕР от их общей величины можно принимать как будущую составляющую ЭЗ ! Если поток в области депрессии от водозабора является транзитным, т.е. не разгружается в зоне месторождения, то в балансовом уравнении не будет члена - следовательно, воронка будет непрерывно углубляться и расширяться, срабатывая запасы пласта и не обращая внимания на то, что эта вода куда-то двигается. Так будет до тех пор, пока воронка не дойдет до границ дренирования или ... не начнется перепонижение уровней в водозаборе, что потребует уменьшения его производительности вплоть до полного прекращения водоотбора.
- 275.
Оценка естественных ресурсов
-
- 276.
Оценка инженерно-геологических и гидрогеологических условий района строительства
Другое Геодезия и Геология Неблагоприятным экзогенным процессом на моем разрезе является река. Геологическое строение речных долин имеет важное значение при инженерно-геологической их оценке в строительных целях. На пути своего движения реки совершают большую геологическую работу - разрушают горные породы ( эрозия ), переносят ( аккумуляция ) продукты разрушения в растворенном виде , во взвешенном состоянии и перекатыванием обломков по дну. Большое влияние на реки оказывает производственная деятельность человека. Сброс в реки большого количества вод с орошаемых территорий может привести к усилению эрозионной деятельности. Строительство водохранилищ в свою очередь влияет на положение базиса эрозии всей реки или ее части. Выше плотин уменьшаются скорости течения, растет аккумуляция наносов, ниже плотин резко возрастает донная эрозия. Для зданий и сооружений , расположенных в речных долинах, подмыв берегов представляет значительную опасность. Скорость размыва берегов, сложенных рыхлыми породами, может быть значительной. С боковой эрозией борются укреплением берегов с регулированием течения реки. Способы укрепления подводной и надводной части берега различны. Подводную часть берега ниже меженного горизонта укрепляют каменной наброской и фашинными тюфяками , загруженными камнем; надводная часть крепится бетонными армированными плитами, подпорными стенками, камнем в плетневых клетках. Неблагоприятно сказываются паводки на пойму реки. Сооружения и берега долины необходимо защищать земляными дамбами, отсыпкой камня и другими способами, позволяющими нейтрализовать эрозионную силу паводковых вод.
- 276.
Оценка инженерно-геологических и гидрогеологических условий района строительства
-
- 277.
Оценка месторождений полезных ископаемых
Другое Геодезия и Геология Внутренний контур отстраивается через крайние разведочные пересечения, встретившие полезные ископаемые, внешний - через точки предполагаемых естественных или условных (экстраполированных) границ распространения месторождения или его части. Запасы, оконтуренные по густой сети разведочных пересечений, относятся к категориям А и В и только на некоторых сложных объектах разведки - к категории С1. Запасы, расположенные за пределами внутреннего контура, относятся к категориям С1 и С2. В пределах выработки опорные точки устанавливаются по данным замеров, непосредственных наблюдений и опробования. При этом кроме распределения полезных компонентов в геологическом теле учитывается характер его выклинивания. При резком выклинивании и чётких геологических границах подсчётный контур совпадает с геологическим. При постепенном выклинивании и сложном распределении полезных компонентов оконтуривание производят по пробе с бортовым содержанием, по мощности или метропроценту (произведение величины мощности на содержание).
- 277.
Оценка месторождений полезных ископаемых
-
- 278.
Оценка ущерба от чрезвычайных ситуаций
Другое Геодезия и Геология Внезапное разру-шение сооруженийМр Нр-Мр Нр-----Аварии электроэнер-гетических ситемМр Нр-Мр Нр-Мр Нр-Мр Нр-Аварии на кому-нальных системах жизнеобеспеченияМр НрВф ЗфМр НрВф ЗфНр Мр Рр/г РрекВф ЗфНр Мр Рр/г Ррек Рс/г Рл/г РпзфВф ЗфАварии на очистных сооруженияхМр НрАф Вф ЗфМр НрАф Вф ЗфНр Мр Рр/г Ррек Рс/г Рл/г РпзфАф Вф ЗфНр Мр Рр/г Ррек Рс/г Рл/г РпзфАф Вф ЗфГидродинамические аварииМр Нр Ррек Рс/г Рл/г РпзфВфМр Нр Ррек Рс/г Рл/г РпзфВф ЗфНр Мр Рс/г Рл/г Рр/г Ррек РпзфВф ЗфНр Мр Рс/г Рл/г Рр/г Ррек РпзфВф ЗфЧрезвычайные ситуации природного характераГеологические и геофизические опасные явленияНр МрАф Вф ЗфНр МрАф Вф ЗфНр Мр Рр/г Ррек Рс/г Рл/г РпзфАф Вф ЗфНр Мр Рр/г Ррек Рс/г Рл/г РпзфАф Вф ЗфМетеорологические и агрометеорологи-ческие опасные явленияМр Рл/г Нр -Мр Рл/г Нр -Мр Нр Рс/г Рл/гАф Вф ЗфМр Рс/г Нр Рл/г Рпзф Рр/г РрекАф Вф ЗфГидрологические опасные явленияМр Нр Рс/г Рл/г Рр/г РрекВфМр Нр Рс/г Рр/г Рл/г РрекВфМр Нр Рс/г Рр/г Рл/г Ррек Вф--Пожары лесные, степные, хлебных массивов, полез-ных ископаемыхМр Нр Рс/г Рл/гАф ЗфМр Нр Рс/г Рл/г Ррек Рпзф Аф ЗфМр Нр Рс/г Рл/г Ррек Рпзф Рр/г Аф ЗфМр Нр Рс/г Рл/г Ррек Рпзф Рр/г Аф ЗфЧрезвычайные ситуации медицинского и биологического характераИнфекционная за-болеваемость людейНр-Нр-Нр Мр-Нр Мр-Инфекционная забо-леваемость с/х жив.Мр-Мр-Мр Нр-Мр Нр-Поражение с/х раст. болезнями и вредит.Мр-Мр-Мр Рс/г-Мр Рс/г Нр-Чрезвычайные ситуации экологического характераИзменение состояния сушиРс/г Рл/г РпзфВф ЗфРс/г Рл/г Рпзф РрекВф ЗфРс/г Рл/г Мр Нр Рпзф Ррек Рр/гВф ЗфРс/г Рл/г Мр Нр Рпзф Ррек Рр/гВф ЗфИзменеиие состояния и свойств атмосферы Нр Ррек Рс/г Рл/г РпзфАфНр Ррек Рс/г Рл/г РпзфАфНр Ррек Мр Рс/г Рл/г РпзфАфНр Ррек Мр Рс/г Рл/г РпзфАфИзменеиие состояния и свойств гидросферы Нр Рр/г Ррек Рс/гВфНр Рр/г Ррек Рс/г РпзфВфНр Рр/г Мр Ррек Рс/г Рл/г РпзфВфНр Рр/г Мр Ррек Рс/г Рл/г РпзфВфИзменеиие состояния биосферы Ущербы должны рассчитываться по специальным методикам
- 278.
Оценка ущерба от чрезвычайных ситуаций
-
- 279.
Оцінка точності при параметричному методі врівноваження
Другое Геодезия и Геология Елементами геодезичних мереж є вимірювані на місцевості горизонтальні кути, довжини ліній, перевищення між точками, введемо наступні позначення (k<n):
- Yj (j = 1, k) дійсні значення шуканих параметрів або необхідних невідомих;
- y* j (j = 1, k) зрівняні значення параметрів;
- yj (j = 1, k) наближені значення параметрів;
- tj (j = 1, k) поправки в наближені значення параметрів;
- Xi (i = 1, n) дійсні значення елементів мережі;
- x*i (i = 1, n) зрівняні значення елементів;
- vi (i = 1, n) поправки у виміряні значення елементів мережі;
- aij (i = 1, n; j = 1, k) коефіцієнти параметричних рівнянь поправок;
- li (i = 1, n) вільні члени параметричних рівнянь поправок;
- 279.
Оцінка точності при параметричному методі врівноваження
-
- 280.
П.К. Соболевский – основоположник геометрии недр
Другое Геодезия и Геология
- 280.
П.К. Соболевский – основоположник геометрии недр