Информация по предмету Геодезия и Геология

  • 221. Неогеновый период и миоценовая эпоха
    Другое Геодезия и Геология

    В Альпийской складчатой области Ю. Европы и Юго-Западной Азии в конце палеогена начался орогенный этап развития, который выражался в поднятии многочисленных горных хребтов (Альп, Карпат, Балкан, Динарских гор, Апеннин, Кавказа, Крыма, гор Понта и Тавра, Загроса, Белуджистана, Гималаев и др.). Рост гор сопровождался образованием межгорных и краевых впадин, которые усиленно прогибались и заполнялись продуктами размыва растущих гор (молассами). В результате движений земной коры осадочные толщи были собраны в складки. Вместе с тем происходили крупные внедрения гранитов. Вдоль разломов магма проникала на поверхность, изливаясь в виде лавовых покровов и образуя вулканические конусы. Главными центрами вулканизма были Апеннинский полуостров, Малая Азия, Ю. Балканского полуострова, Кавказ. В конце периода произошло образование глубоких впадин внутренних морей - Лигурийского, Тирренского, Ионического, Чёрного, Каспийского, а также Адриатического, Мраморного. Все они обладают относительно крутыми бортами и плоским дном. Под ними, как показывают геофизические наблюдения, отсутствует гранитно-метаморфический слой земной коры и непосредственно под осадочными толщами залегает базальтовый слой. По строению дна они сходны с впадинами океанов. В Индонезии поднимались подводные горные гряды, превратившиеся в цепи островов, образовались глубоководные геосинклинальные желоба и котловины окружающих морей.По периферии Тихого океана вдоль края материков также происходили поднятия горных систем (Кордильер, Анд, Камчатки, Японии, Филиппин, Новой Гвинеи, Новой Зеландии), рост островных дуг и образование глубоководных желобов и котловин. За пределами активных областей периферии Тихого океана и Средиземноморского пояса Евразии на многих участках материков в Н. п. также наблюдались интенсивные движения, выражавшиеся в глыбовых поднятиях гор и углублении разделявших их впадин. В это время образовались горы Центральной Азии: Тянь-Шань, Куньлунь, Алтай, Саяны, Прибайкалье, Становой хребет. Более слабые поднятия испытали также скандинавские горы, Атлас, Урал, Аппалачи, горы Восточной Австралии и др. Вместе с тем в двух активных областях материков, в пределах Африки и Азии, происходило формирование по разломам глубоких рифтовых впадин (провалов) земной коры и окаймлявших их поднятий. Это система грабенов района озера Байкал, Ангары, Баргузина и др., а также система грабенов Восточной Африки и Красного моря. Движения по разломам последней системы сопровождались землетрясениями и сильными явлениями вулканизма, выраженными огромными конусами действующих (Кения, Килиманджаро и др.) и потухших вулканов, с большими полями туфов и лав. Сходным, но менее грандиозным было образование грабена долины Рейна, сопровождавшееся вулканизмом. Формирование рифтовых впадин происходило в осевых частях срединноокеанических хребтов всех океанов, что также сопровождалось интенсивным вулканизмом и землетрясениями.Сильная расчленённость рельефа привела к тому, что отложения Неогеновая система частично формировались в отдельных более или менее изолированных бассейнах, следствием чего явилось большое разнообразие литологического состава и содержащихся в них органических остатков. В пределах центральных частей материков отложения Неогеновой системы распространены широко и представлены континентальными осадками незначительной мощности. Только в предгорных и межгорных впадинах они иногда достигают огромной мощности, измеряемой несколькими км; преобладают пески, песчаники, глины, мергели, органогенные известняки, а также мощные галечники и конгломераты подножий гор; местами известны угленосные породы с бурыми углями. В засушливых областях шло накопление мощных толщ гипса, калийной и др. солей. В конце неогена в северных горных странах образовались ледники и ледниковые покровы. В Антарктиде они появились в начале Неогенового периода В неогене происходило формирование современных контуров материков и океанов и основных черт их рельефа. Расположение климатических зон и характер растительного и животного мира были также близки к современным.

  • 222. Нерудные полезные ископаемые
    Другое Геодезия и Геология

    С пластами солей Предуральского краевого прогиба и Прикаспийской синеклизы связаны месторождения хлорида натрия поваренной соли. Образование соленосных пластов происходило в конце палеозоя (270 млн. лет назад) в существовавшей здесь огромной замкнутой лагуне. В условиях жаркого сухого климата в ней происходило осаждение галита минерала каменной соли, а также накопление гипса. После исчезновения солеродного бассейна осталась огромная, покрытая солью равнина. Позднее соль была перекрыта другими осадочными породами. Давление этих пород на соль приводило к тому, что соляные пласты приобретали подвижность и текучесть. В зонах, ослабленных разломами, соль устремлялась по трещинам наверх, приподнимая и деформируя вышележащие породы. Горообразовательные движения со стороны Урала сжимали лежащие у подножия гор соляные пласты, формируя соляные складки. Процесс образования соляных куполов в Оренбургском Предуралье наиболее интенсивно происходил на рубеже палеозоя и мезозоя.

  • 223. Нестационарный режим опытно-эксплуатационной откачки (ОЭО)
    Другое Геодезия и Геология

    Таким образом, рассмотрев возможности применения гидравлического метода (как в стационарной, так и в нестационарной постановке ОЭО) мы пришли к тому, с чего начинали - хотели закрыть глаза на сложные условия и изучить их "обобщенно", с помощью интегральной количественной характеристики ; однако, получается, что все равно нужно очень серьезно заниматься изучением (количественным!) неоднородности строения пласта, границ с их параметрами и всех других элементов фильтрационной схемы, так как нужно ОТВЕТСТВЕННО идти на экстраполяцию: либо по дебитам (кривые ), либо по времени (графики ).

  • 224. Нефрит
    Другое Геодезия и Геология

    В древности считали, что нефрит обладает многими лечебными свойствами: приносит успокоение, излечивает почечные болезни, с чем и связано его название (от греч. nejroV (нефрос) почка). Небольшие по размеру гальки нефрита по внешнему облику напоминают почку. Удивительные свойства нефрита его крепость (в два раза прочнее стали), вязкость, стойкость к истиранию и воздействию кислот с давних времен привлекали к нему внимание человека. Археологическими изысканиями обнаружены предметы из нефрита, относящиеся к неолиту. Из нефрита изготавливали различные орудия труда и вооружение, вырезали амулеты (в основном из белого нефрита), фигурки богов, украшения. Особенно большой популярностью пользовался нефрит в Древнем Китае, где он ценился настолько высоко, что из него делали бляшки, имевшие хождение наравне с монетами; нефритовые грузики были эталоном для взвешивания золота, а послам в качестве верительных грамот вручали пластинки из нефрита. Во всем мире известны знаменитые китайские резные изделия: вазы, чаши, шкатулки, фигурки животных, пагоды, шары, расположенные один в другом, и другие ювелирные изделия. Нефрит до середины XIX в. ввозился в Россию из Китая. В это время Петергофская гранильная фабрика приобретала темно-зеленый нефрит по тысяче рублей за пуд, а за более качественный цена удваивалась. В середине XIX в. Г. М. Пермикиным были выявлены в Восточном Саяне валуны нефрита, а затем первое коренное месторождение. Изделия Петергофской гранильной фабрики из саянского нефрита демонстрировались на Всемирных выставках в Лондоне и Париже в 1862 и 1867 гг.

  • 225. Нефтегазоносность Алжира
    Другое Геодезия и Геология

    %20%d0%b7%d0%b0%d0%bd%d0%b8%d0%bc%d0%b0%d0%b5%d1%82%2080%20%%20%d1%82%d0%b5%d1%80%d1%80%d0%b8%d1%82%d0%be%d1%80%d0%b8%d0%b8%20%d1%81%d1%82%d1%80%d0%b0%d0%bd%d1%8b%20%d0%b8%20%d1%81%d0%be%d1%81%d1%82%d0%be%d0%b8%d1%82%20%d0%b8%d0%b7%20%d0%be%d1%82%d0%b4%d0%b5%d0%bb%d1%8c%d0%bd%d1%8b%d1%85%20%d0%bf%d0%b5%d1%81%d1%87%d0%b0%d0%bd%d1%8b%d1%85%20(%d0%91%d0%be%d0%bb%d1%8c%d1%88%d0%be%d0%b9%20%d0%97%d0%b0%d0%bf%d0%b0%d0%b4%d0%bd%d1%8b%d0%b9%20%d0%ad%d1%80%d0%b3,%20%d0%91%d0%be%d0%bb%d1%8c%d1%88%d0%be%d0%b9%20%d0%92%d0%be%d1%81%d1%82%d0%be%d1%87%d0%bd%d1%8b%d0%b9%20%d0%ad%d1%80%d0%b3,%20%d0%ad%d1%80%d0%b3-%d0%98%d0%b3%d0%b8%d0%b4%d0%b8,%20%d0%ad%d1%80%d0%b3-%d0%a8%d0%b5%d1%88)%20%d0%b8%20%d0%ba%d0%b0%d0%bc%d0%b5%d0%bd%d0%b8%d1%81%d1%82%d1%8b%d1%85%20(%d0%bf%d0%bb%d0%b0%d1%82%d0%be%20%d0%a2%d0%b0%d0%bd%d0%b5%d0%b7%d1%80%d1%83%d1%84%d1%82,%20%d0%a2%d0%b8%d0%bd%d0%b3%d0%b5%d1%80%d1%82,%20%d0%a2%d0%b0%d0%b4%d0%b5%d0%bc%d0%b0%d0%b8%d1%82,%20%d0%ad%d0%bb%d1%8c-%d0%ad%d0%b3%d0%bb%d0%b0%d0%b1)%20%d0%bf%d1%83%d1%81%d1%82%d1%8b%d0%bd%d1%8c%20<http://ru.wikipedia.org/wiki/%D0%9F%D1%83%D1%81%D1%82%D1%8B%D0%BD%D1%8F>.%20%d0%9d%d0%b0%20%d1%8e%d0%b3%d0%be-%d0%b2%d0%be%d1%81%d1%82%d0%be%d0%ba%d0%b5%20%d0%b0%d0%bb%d0%b6%d0%b8%d1%80%d1%81%d0%ba%d0%be%d0%b9%20%d0%a1%d0%b0%d1%85%d0%b0%d1%80%d1%8b%20%d0%bf%d1%80%d0%b8%d0%bf%d0%be%d0%b4%d0%bd%d1%8f%d1%82%d0%be%20%d0%bd%d0%b0%d0%b3%d0%be%d1%80%d1%8c%d0%b5%20%d0%90%d1%85%d0%b0%d0%b3%d0%b3%d0%b0%d1%80%20<http://ru.wikipedia.org/wiki/%D0%90%D1%85%D0%B0%D0%B3%D0%B3%D0%B0%D1%80>,%20%d0%b3%d0%b4%d0%b5%20%d0%bd%d0%b0%d1%85%d0%be%d0%b4%d0%b8%d1%82%d1%81%d1%8f%20%d0%b2%d1%8b%d1%81%d0%be%d1%87%d0%b0%d0%b9%d1%88%d0%b0%d1%8f%20%d1%82%d0%be%d1%87%d0%ba%d0%b0%20%d0%90%d0%bb%d0%b6%d0%b8%d1%80%d0%b0%20-%20%d0%b3%d0%be%d1%80%d0%b0%20%d0%a2%d0%b0%d1%85%d0%b0%d1%82%20(2906%20%d0%bc).%20%d0%9d%d0%b0%d0%b3%d0%be%d1%80%d1%8c%d0%b5%20%d0%90%d1%85%d0%b0%d0%b3%d0%b3%d0%b0%d1%80%20%d1%8f%d0%b2%d0%bb%d1%8f%d0%b5%d1%82%d1%81%d1%8f%20%d0%b2%d1%8b%d1%88%d0%b5%d0%b4%d1%88%d0%b8%d0%bc%20%d0%bd%d0%b0%20%d0%bf%d0%be%d0%b2%d0%b5%d1%80%d1%85%d0%bd%d0%be%d1%81%d1%82%d1%8c%20%d0%bc%d0%b5%d1%82%d0%b0%d0%bc%d0%be%d1%80%d1%84%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%bc%20%d1%84%d1%83%d0%bd%d0%b4%d0%b0%d0%bc%d0%b5%d0%bd%d1%82%d0%be%d0%bc%20%d0%a1%d0%b0%d1%85%d0%b0%d1%80%d1%81%d0%ba%d0%be%d0%b9%20%d0%bf%d0%bb%d0%b0%d1%82%d1%84%d0%be%d1%80%d0%bc%d1%8b,%20%d0%b2%d0%be%d0%b7%d1%80%d0%b0%d1%81%d1%82%d0%be%d0%bc%202%20%d0%bc%d0%bb%d1%80%d0%b4%20%d0%bb%d0%b5%d1%82.%20%d0%a1%d0%be%20%d0%b2%d1%81%d0%b5%d1%85%20%d1%81%d1%82%d0%be%d1%80%d0%be%d0%bd%20%d0%bd%d0%b0%d0%b3%d0%be%d1%80%d1%8c%d0%b5%20%d0%be%d0%ba%d1%80%d1%83%d0%b6%d0%b5%d0%bd%d0%be%20%d1%81%d1%82%d1%83%d0%bf%d0%b5%d0%bd%d1%87%d0%b0%d1%82%d1%8b%d0%bc%d0%b8%20%d0%bf%d0%bb%d0%b0%d1%82%d0%be%20%d0%a2%d0%b0%d1%81%d1%81%d0%b8%d0%bb%d0%b8%d0%bd-%d0%90%d0%b4%d0%b4%d0%b6%d0%b5%d1%80,%20%d0%a2%d0%b0%d1%81%d1%81%d0%b8%d0%bb%d0%b8%d0%bd-%d0%90%d1%85%d0%b0%d0%b3%d0%b3%d0%b0%d1%80%20%d0%b8%20%d0%b3%d0%be%d1%80%d0%b0%d0%bc%d0%b8%20%d0%9c%d1%83%d0%b9%d0%b4%d0%b8%d1%80.%20%d0%a1%d0%b5%d0%b2%d0%b5%d1%80%20%d0%b0%d0%bb%d0%b6%d0%b8%d1%80%d1%81%d0%ba%d0%be%d0%b9%20%d0%a1%d0%b0%d1%85%d0%b0%d1%80%d1%8b%20%d0%bb%d0%b5%d0%b6%d0%b8%d1%82%20%d0%bd%d0%b0%2026%20%d0%bc%20%d0%bd%d0%b8%d0%b6%d0%b5%20%d1%83%d1%80%d0%be%d0%b2%d0%bd%d1%8f%20%d0%bc%d0%be%d1%80%d1%8f.%20%d0%97%d0%b4%d0%b5%d1%81%d1%8c%20%d1%80%d0%b0%d1%81%d0%bf%d0%be%d0%bb%d0%be%d0%b6%d0%b5%d0%bd%d0%be%20%d1%81%d0%be%d0%bb%d1%91%d0%bd%d0%be%d0%b5%20%d0%be%d0%b7%d0%b5%d1%80%d0%be%20%d0%a8%d0%be%d1%82%d1%82-%d0%9c%d0%b5%d0%bb%d1%8c%d0%b3%d0%b8%d1%80%20<http://ru.wikipedia.org/wiki/%D0%A8%D0%BE%D1%82%D1%82-%D0%9C%D0%B5%D0%BB%D1%8C%D0%B3%D0%B8%D1%80>.">Пустыня Сахара <http://ru.wikipedia.org/wiki/%D0%A1%D0%B0%D1%85%D0%B0%D1%80%D0%B0> занимает 80 % территории страны и состоит из отдельных песчаных (Большой Западный Эрг, Большой Восточный Эрг, Эрг-Игиди, Эрг-Шеш) и каменистых (плато Танезруфт, Тингерт, Тадемаит, Эль-Эглаб) пустынь <http://ru.wikipedia.org/wiki/%D0%9F%D1%83%D1%81%D1%82%D1%8B%D0%BD%D1%8F>. На юго-востоке алжирской Сахары приподнято нагорье Ахаггар <http://ru.wikipedia.org/wiki/%D0%90%D1%85%D0%B0%D0%B3%D0%B3%D0%B0%D1%80>, где находится высочайшая точка Алжира - гора Тахат (2906 м). Нагорье Ахаггар является вышедшим на поверхность метаморфическим фундаментом Сахарской платформы, возрастом 2 млрд лет. Со всех сторон нагорье окружено ступенчатыми плато Тассилин-Адджер, Тассилин-Ахаггар и горами Муйдир. Север алжирской Сахары лежит на 26 м ниже уровня моря. Здесь расположено солёное озеро Шотт-Мельгир <http://ru.wikipedia.org/wiki/%D0%A8%D0%BE%D1%82%D1%82-%D0%9C%D0%B5%D0%BB%D1%8C%D0%B3%D0%B8%D1%80>.

  • 226. Нефтегазоносность Днепровско-Донецкой впадины
    Другое Геодезия и Геология
  • 227. Нефтегазоносность карбонатных пород
    Другое Геодезия и Геология

    В нефтянных пластах часть воды может быть и в свободном состо-янии в виде водоносных пропластков за счет недостаточного давления или объема вытесняющего флюида - нефти или газа. Это же явление может наблюдаться и в приконтурной части месторождения. Но при полном за-полнении ловушки нефтью или газом количество оставшейся воды должно определяться прежде всего структурными особенностями порового прос-транства: размером, процентным соотношением мелких и крупных пор, извилистостью их стенок, т. е. величиной внутренней удельной поверх-ности каналов, поверхностными свойствами пород и пластовых жидкос-тей. Гидрофильные и олефильные свойства самих пород имеют при сохра-нении остаточной воды в поровых каналах огромное значение. Увеличение содержания органических и глинистых смесей, облажающих высокой сорбционной способностью, приводит к повышенному содержанию остаточной воды в пласте - коллекторе. Различный минеральный состав горных пород определяет неодинаковые поверхностные свойства, в том числе и смачиваемость. Смачиваемость пористой среды различными флюидами является одним из важнейших параметров, определяющих остаточную водонефтенасыщенность, скорость вытеснения, капиллярную пропитку и относительную проницаемость пород. Благодаря ей в породах с одинаковыми фильтрационными свойствами количество удержанной воды в поровых каналах будет различным. Сохраняясь в пористой среде за счет сил молекулярного сцепления, остаточная ( связанная ) вода имеет неодинаковый характер распределения: вв виде пленок различной толщины она располагается в крупных и мелких поровых каналах, заполняет углы и извилистые участки и почти полностью занимает мельчайшие поры размером менее 1 мкм.

  • 228. Нефтегазоносность Российской Арктики
    Другое Геодезия и Геология

    Общая площадь всего арктического шельфа превышает 26 млн км². Россия по сравнению с другими странами мира располагает самым протяженным и наибольшим по площади морским шельфом. Площадь перспективной акватории российского сектора Арктики составляет не менее 5 млн км². Почти все пространство Арктики расположено на блоке дорифейской континентальной коры (Е.Е.Милановский). Последующие события (рифтогенез, формирование зон каледонид, мезозойский тектогенез, раскрытие океанических котловин и др.) определили формирование современной структуры этого региона. В пределах арктического шельфа выделились два крупных блока земной коры. Евразийский, Норвежско-Баренцево-Карский, блок охватывает одноименные моря, западную часть моря Лаптевых, архипелаги и острова (Шпицберген, Земля Франца-Иосифа, Северная Земля, Новая Земля и др.). Амеразийский блок включает восточную часть моря Лаптевых, Восточно-Сибирское море с Новосибирскими островами и Чукотское море с островами Врангеля и Геральда. Блоки разделены рифтовой зоной подводного хребта Гаккеля, ответвлениями этой зоны на юге, а также смежными с хребтом глубоководными котловинами. На режим и особенности нефтегазоносности выделенных в пределах этих блоков осадочных бассейнов существенное влияние оказывал рифтогенез.

  • 229. Новейшие гигантские эксплозивно-обвальные лавины катастрофических извержений вулкана Шивелуч на Камчатке
    Другое Геодезия и Геология

    Рис. 5 Начальной предпосылкой, по мнению автора, во многом определившей тип и динамику извержения 1964 г., послужило то, что возникший ~1430 г. [30] крупный вершинный, открытый на юг кратер вулкана Молодой Шивелуч уже в 1950 г. был практически полностью занят слившимися между собой экструзивными куполами (см. рис.2,3) общим объемом вместе с их агломератовыми мантиями более 1 км3. Высоты вершин куполов были заключены в интервале 2300-2800 м. В последующие 14,5 лет (с 7 апреля 1950 г. по 11 ноября 1964 г.) здесь наблюдалась лишь фумарольная активность. В связи с чем понятно, почему подготовка извержения 1964 г. началась со скачкообразно возраставшей сейсмической активности [23]: вязкая андезитовая магма, продвигаясь рывками, заново прокладывала себе путь наверх. Достигнув подошвы массивных, высоких и тяжелых экструзивных куполов, магма, по-видимому, стала внедряться между их основаниями и подстилающей поверхностью. Преобладавшее до того преимущественно вертикальное направление движения магмы сменилось субгоризонтальным южных румбов, в соответствии с уклоном днища старого кратера (рис.5). Вместе с магмой начали перемещаться и расположенные над ней экструзивные купола. В результате этого постройки экструзивных куполов были в какой-то момент разорваны, что явилось причиной трех происшедших тогда катастрофических событий: 1) сильнейшего (К=12,3) за все время поверхностного землетрясения в 7 ч 7 мин 20 с [по 23,25] утра 12 ноября; 2) образования гигантской грубообломочной обвальной лавины из разрушенных пород, сместившихся к югу и вниз экструзивных куполов; 3) возникновения большей по размеру южной части кратера.

  • 230. Новый подход к определению понятия "действующий вулкан"
    Другое Геодезия и Геология

    В первом для Камчатки каталоге вулканов [30] П.Т.Новограбленов насчитывает в 1931 г. уже 19 действующих вулканов (табл.1). Он же, по сути дела, первым на Камчатке сформулировал в общем виде определение понятия "действующий вулкан", назвав действующими вулканы периодически активные и находящиеся в стадии сольфатар. Принципиально сходное определение дано и в "Справочнике по вулканологии" 1984 г. [11]. Там к действующим относится вулкан, "извержения которого происходят в настоящее время или происходили в течение исторического времени, а также вулкан, который обнаруживает постоянную фумарольную деятельность" [11, с.35]. Однако, в 1957 г. В.И.Влодавец и Б.И.Пийп включили в "Каталог действующих вулканов Камчатки" [12] и "некоторые другие крупные многоактные вулканы, для которых нет сведений об их исторических извержениях, но которые обладают малоизмененными формами и свежими на вид лавовыми потоками". На этом основании к действующим ими были отнесены вулканы Крашенинникова и Кихпиныч, а еще ранее по этим же признакам Б.И.Пийп предложил включить в состав действующих вулкан Безымянный [32]. Таким образом, была сделана попытка при отнесении вулканов к действующим учитывать и геологические данные. Однако понятия "свежие" и "малоизмененные" тоже достаточно субъективны. Следует отметить, что даже при очень хорошей сохранности одноактные формы в каталог не помещены. Всего в каталоге имеется 28 действующих вулканов (см. табл.1).

  • 231. О возможности использования термомагнитных параметров для идентификации вулканических пеплов
    Другое Геодезия и Геология

    Вулканические пеплы обычно дают кривые Ii(T) с довольно широкими максимумами. Это объясняется естественным разбросом характеристик присутствующих магнитных минералов и уменьшением эффекта Гопкинсона при повышении поля H, требующегося для получения приемлемого выходного сигнала аппаратуры. Но широкие максимумы не позволяют однозначно выявлять TC. Поэтому нами были использованы другие температурные параметры T1, T2, T3 и т.д., названные здесь "характеристическими температурами" и раскрывающие связанные с TC особенности кривых. На кривой Ii(T) нетрудно увидеть ряд почти линейных участков, через которые нетрудно провести аппроксимирующие прямые (см. рис.3). Точка пересечения прямой линии, аппроксимирующей участок крутого высокотемпературного спада, с осью температур использовалась нами как первая характеристическая точка - T1. Вторая характеристическая точка, T2, получается как абсцисса точки пересечения той же прямой с линейной аппроксимацией ближайшего плавного участка нашей кривой. T2 близка к TC, но гораздо более определенна. T1 в совокупности с T2 характеризует такое свойство кривой как крутизна спада на участке перехода минералов из ферримагнитной фазы в парамагнитную. Узкий диапазон смены фаз T2-T1 присущ для мономинеральных магнитных составляющих как на рисунке 1 кривая "магнетит".

  • 232. О геологическом возрасте Земли
    Другое Геодезия и Геология

    Существенно меньшими отрезками времени, соответствующими рукописной истории человечества (примерно 4000 лет) оперирует радиоуглеродный метод датирования. Углеродный метод был разработан и применен Уиллардом Либби, получившим в последствии за это Нобелевскую премию. Существуют два изотопа углерода стабильный и нестабильный с периодом полураспада 5700 лет. Баланс концентрации изотопов углерода обеспечивается потоком космических нейтронов в результате происходящей в атмосфере реакции ядерной реакции ... Идея метода состоит в сопоставлении концентраций этих двух изотопов (на один атом С14 приходится 765 000 000 000 атомов С12). Метод опирается на допущение, что это соотношение не менялось в течение последних 50000 лет и концентрация изотопов одинакова во всей атмосфере. После образования, изотоп С14 практически сразу окисляется до СО2 и включается в углеродный цикл жизни: ... и т.д. Соотношение изотопов С14/С12 не меняется при жизни растения или животного, а после гибели концентрация падает в соответствии с законом радиоактивного распада. Период полураспада - это время, за которое количество атомов радиоактивного изотопа уменьшается в два раза. Тогда за два периода оно уменьшится в четыре раза, за три - в восемь и т.д. Подобные рассуждения приводят к общей формуле: за n периодов полураспада число атомов уменьшается в 2n раз. Эта формула и устанавливает верхнюю границу применимости радиоуглеродного метода в 50000 лет. После разработки радиоуглеродного метода множество окаменелостей подверглись датированию, и среди них не оказалось объектов, не содержащих изотопа С14. Т.е. возраст всех окаменелостей был в пределах 50 000 лет, а не составлял миллионы и миллиарды лет, как считалось ранее. Однако впоследствии результаты углеродного датирования подвергались цензуре и неугодные эволюционистам факты стали попросту замалчиваться.

  • 233. О применении метода ССП для прогнозирования геодинамических явлений
    Другое Геодезия и Геология

    Вспомним классический пример разрушения моста в результате того, что проходившие по нему солдаты шли в ногу. При анализе этого происшествия прочность моста никого не интересует. Главное в величине добротности моста как колебательной системы. Каждый удар каблуками вызывает собственные затухающие колебания моста. Если скорость затухания этих колебаний мала, то каждый последующий удар будет происходить в момент, когда уже возникшие колебания еще не затухли. И при соответствующем соотношении собственной частоты моста и частоты шагов может начаться рост амплитуды колебаний. Это явление резонанса (то есть совпадения собственной частоты с частотой воздействия) хорошо изучено, в частности, в электротехнике и легко моделируется. Чем меньше скорость затухания, тем острее резонанс, то есть тем быстрее идет наращивание амплитуды. Добротность Q обратно пропорциональна скорости затухания, и оперировать ею удобно потому, что она легко выявляется при спектральном изображении сигнала. Численное значение добротности показывает, во сколько раз увеличивается амплитуда колебаний на резонансе.

  • 234. О природе грязевых вулканов
    Другое Геодезия и Геология

    Булганакский грязевулканический очаг находится в 8-10 км севернее г. Керчь, восточнее озера Чокрак, на южном крыле Бондаренковской антиклинали, в непосредственной близости от берега Азовского моря. Он занимает площадь в 4км2 , причем в центральной его части расположен огромный грязевулканический солончак (рис.4.5). Его глубина превышает 25 - 30 м, центральная часть непрерывно бурлит и поставляет на поверхность более 100 м3/сут. углеводородных газов и около 5000 л жидкой грязи ( Шнюков и др., 1986). В северной части очага располагаются сальзы или сопки Андрусова, Павлова, Тищенко, Абиха, Вернадского, в южной части - сопки Обручева, Булганак и Ольденбургского, а на западе - Трубецкого и Шилова. Самая крупная сопка Андрусова возвышается над местностью на 5 - 7 м, имеет диаметр основания в 300 м и кратерную площадку в 50 м. Геологическое строение района, скрытого Булганакским полем грязебрекчий, во многом неясно. Е.Ф.Шнюков предполагает здесь существовалие "вдавленной синклинали", которая скрыта мощным чехлом сопочных брекчий.

  • 235. О структуре поля упругих колебаний при сейсмоизмерениях
    Другое Геодезия и Геология

    Максимальное значение скорости наблюдается при сквозном прозвучивании пластины, то есть когда регистрация идет в точке п. Для стекла, керамики а также большинства металлов величина этой скорости V - примерно 6000м/с. При регистрации сигнала в точках с индексом "=" скорость распространения V= существенно ниже. Но самое главное, что эта скорость зависит от расстояния до точки ударного воздействия l. Минимальное значение скорости - при самых малых расстояниях. Минимальное расстояние l0 определяется допустимой погрешностью при определении расстояния. В лабораторных условиях толщина пластины вряд ли будет больше чем 10 мм, и при этом расстояние l0 (тоже примерно 10мм) оказывается примерно равным h. При l0h величина скорости V= примерно равна 1000м/с. Затем, с увеличением l, скорость V= увеличивается, и приближается асимптотически к значению, примерно вдвое меньшему, чем V. С приближением к точке удара график зависимости V=(l) увеличивает свою толщину, что соответствует увеличению погрешности ее определения.

  • 236. Обвалы и оползни. Эоловые формы рельефа
    Другое Геодезия и Геология

    Вот, как оценивается сила землетрясения по баллам:

    1. балл (незаметное землетрясение) сотрясения почвы улавливают только специальные приборы сейсмографы.
    2. балла (очень слабое землетрясение) может слегка ощущаться людьми, лежащими в постели.
    3. балла (слабое землетрясение) слегка качаются люстры.
    4. балла (умеренное землетрясение) открываются неплотно закрытые окна и двери; выплескивается вода из налитой до краев чашки.
    5. баллов (довольно сильное землетрясение) раскачиваются висячие предметы; скрипят полы; дребезжат стекла в окнах; осыпается побелка в домах.
    6. баллов (сильное землетрясение) трескаются стекла в окнах; наблюдаются легкие повреждения некоторых зданий; появляются тонкие трещины в штукатурке.
    7. баллов (очень сильное землетрясение) наблюдаются значительные повреждения некоторые зданий; появляются крупные трещины в стенах; повреждаются дымовые трубы; отламываются куски штукатурки.
    8. баллов (разрушительное землетрясение) наблюдаются разрушения в зданиях; падают карнизы и дымовые трубы; на склонах гор появляются оползни и трещины шириной до десятков сантиметров.
    9. баллов (опустошительное землетрясение) происходят обвалы многих зданий; обрушиваются стены, перегородки, кровля; возникают обвалы, осыпи, оползни в горах.
    10. баллов (уничтожающее землетрясение) разрушены многие здания; возникают трещины в грунте шириной до метра; за счет завалов в речных долинах могут возникать озера.
    11. баллов (катастрофа) характерны многочисленные трещины на поверхности земли и вертикальные перемещения по ним; большие обвалы в горах; общее разрушение зданий.
    12. баллов (сильная катастрофа) происходит сильное изменение рельефа; образуются глубокие и широкие трещины на поверхности; общее разрушение зданий, сооружений, коммуникаций; огромные обвалы и оползни; изменяются русла рек.
  • 237. Образование и разрушение нефтяных эмульсий, их классификация
    Другое Геодезия и Геология
  • 238. Образование и строение океанов и материков
    Другое Геодезия и Геология

    Разломы охватили и Лавразию. Она раскололась на две плиты Северо-Американскую и Евразиатскую, составляющую большую часть материка Евразия. Возникновение этого материка величайший катаклизм в жизни нашей планеты. В отличие от всех других материков, в основе которых лежит по одному осколку древнего континента, в состав Евразии входят 3 части: Евразиатская (часть Лавразии), Аравийская (выступ Гондваны) и Индо-станская (часть Гондваны) литосферные плиты. Сближаясь друг с другом, они почти уничтожили древний океан Тетис. В формировании облика Евразии участвует и Африка, литосферная плита которой хоть и медленно, но сближается с Евразиатской. Результатом этого сближения являются горы: Пиренеи, Альпы, Карпаты, Судеты и Рудные горы (см. Литосферные плиты).

  • 239. Образование Пангеи
    Другое Геодезия и Геология

    В начале протерозоя (2,5 млрд. лет назад) произошла крупная перестройка структурного плана Земли. Возникший в конце архея суперконтинент - первая Пангея - претерпел деструкцию и к 2,3 - 2,2 млрд. лет распался на отдельные, относительно небольшие континенты, разделенные бассейнами с новообразованной океанской корой. Соответственно раннепротерозойская тектоника может быть названа, вслед за канадским геологом А. Гудвином, тектоникой малых плит, в то время как позднеархейская тектоника - эмбриональной тектоникой плит. К концу раннего протерозоя (около 1,7 млрд. лет) континенты вновь спаялись в единый суперконтинент; образовалась новая Пангея. Распад этой Пангеи начался после 1,0 млрд. лет, хотя частичная ее деструкция и восстановление могли иметь место и в промежутке между 1,7 и 1,0 млрд. лет. В интервале 1,0 - 0,6 млрд. лет структурный план земной коры претерпел радикальные изменения и существенно приблизился к современному; с этого времени, как отмечалось, вступила в действие полномасштабная тектоника плит. Возник Тихий океан, наметились прообразы современных Северной Атлантики и будущего широтного океана Тетис, разделившего континенты на северную и южную группы. Но к концу палеозойской эры все континенты вновь спаялись в единый суперматерик; это и есть вегенеровская Пангея.

  • 240. Общая характеристика инженерно-геологических изысканий и исследований
    Другое Геодезия и Геология

    ,%20%d0%b8%d0%bd%d0%b6%d0%b5%d0%bd%d0%b5%d1%80%d0%bd%d0%be-%d0%b3%d0%b8%d0%b4%d1%80%d0%be%d0%bc%d0%b5%d1%82%d0%b5%d0%be%d1%80%d0%be%d0%bb%d0%be%d0%b3%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d1%85),%20%d1%87%d1%82%d0%be%20%d0%bf%d0%be%d0%b7%d0%b2%d0%be%d0%bb%d1%8f%d0%b5%d1%82%20%d0%b8%d0%b7%d0%b1%d0%b5%d0%b6%d0%b0%d1%82%d1%8c%20%d0%b4%d1%83%d0%b1%d0%bb%d0%b8%d1%80%d0%be%d0%b2%d0%b0%d0%bd%d0%b8%d1%8f%20%d0%be%d1%82%d0%b4%d0%b5%d0%bb%d1%8c%d0%bd%d1%8b%d1%85%20%d0%b2%d0%b8%d0%b4%d0%be%d0%b2%20%d1%80%d0%b0%d0%b1%d0%be%d1%82%20(%d0%b1%d1%83%d1%80%d0%b5%d0%bd%d0%b8%d1%8f,%20%d0%be%d1%82%d0%b1%d0%be%d1%80%d0%b0%20%d0%be%d0%b1%d1%80%d0%b0%d0%b7%d1%86%d0%be%d0%b2%20%d0%b8%20%d1%82.%d0%bf.)%20%d0%b8%20%d1%81%d0%be%d0%be%d1%82%d0%b2%d0%b5%d1%82%d1%81%d1%82%d0%b2%d0%b5%d0%bd%d0%bd%d0%be%20%d1%83%d0%b4%d0%b5%d1%88%d0%b5%d0%b2%d0%b8%d1%82%d1%8c%20%d1%80%d0%b0%d0%b1%d0%be%d1%82%d1%8b%20%d0%b2%20%d1%86%d0%b5%d0%bb%d0%be%d0%bc.">При комплексном заказе изыскательских работ программа инженерно-экологических изысканий увязывается с программами других видов изысканий (в частности, инженерно-геологических <http://www.gruppa-rei.ru/5/3436>, инженерно-гидрометеорологических), что позволяет избежать дублирования отдельных видов работ (бурения, отбора образцов и т.п.) и соответственно удешевить работы в целом.