Информация по предмету Биология

  • 41. Аминокислоты
    Другое Биология
  • 42. Амурский тигр
    Другое Биология
  • 43. Амурский тигр
    Другое Биология
  • 44. Анализ медико-биологических данных с использованием Excel и СПП STADIA
    Другое Биология

     

    1. Графическая визуализация экспериментальных результатов с помощью Excel показывает, что исследуемое вещество тиакарпин, не оказывает негативного действия на показатели организма даже при введении высоких доз, а в некоторых случаях увеличение дозы способствовало подавлению процессов перекисного окисления в печени, свидетельствующее о некотором антиоксидантном и гепатопротекторном действии препарата. Неоднозначные результаты были получены по влиянию тиакарпина на белоксинтезирующую функцию организма.
    2. Основываясь на результаты описательной статистики в STADIA 6.2 можно утверждать, что препарат оказывает значительное влияние на все показатели и особенно на белковое содержание. Общее действие тиакарпина направлено на подавление синтеза белка и ингибирование процессов перекисного окисления липидов.
    3. Кластеризация исследуемых групп животных выявила сохранение физиологической нормы при введении тиакарпина в течение 3-х дней в дозе 7.5 мг/кг и в течение 6-и дней в дозе 50 мг/кг. Данные дозы оказывают наименьшую нагрузку на организм.
    4. Использование метрики на основе коэффициента корреляции и стратегии ближайшего соседа показывает, что все пять диагностикумов не взаимосвязаны, т.е. все используемые параметры характеризуют функциональное состояние организма и обладают одинаковой диагностической информативностью.
  • 45. Анализаторы информации в организме
    Другое Биология

    Движение стремени в окне преддверия кнутри вызывает перемещения лабиринтной жидкости, которая выпячивает мембрану окна улитки кнаружи. Эти перемещения необходимы для функционирования высокочувствительных элементов спирального органа. Первой перемещается перилимфа преддверия; ее колебания по scala vestibuli восходят до вершины улитки, через helicotrema передаются перилимфе в scala tympani, по ней спускаются к membrana tympani secundaria, закрывающей окно улитки, являющейся слабым местом в костной стенке внутреннего уха, и как бы возвращаются к барабанной полости. С перилимфы звуковая вибрация передается эндолимфе, а через нее спиральному органу. Таким образом, колебания воздуха в наружном и среднем ухе благодаря системе слуховых косточек барабанной полости переходят в колебания жидкости перепончатого лабиринта, вызывающие раздражения специальных слуховых волосковых клеток спирального органа, составляющих рецептор слухового анализатора.

  • 46. Ананас-гость из тропиков
    Другое Биология

    Ананас - многолетнее тропическое плодовое растение, травянистое, короткостебельное, высотой 40-120 см. Большое количество листьев собрано в прикорневой розетке. Листья кожистые, мясистые, линейные. Кверху листовая пластинка сужается. По краям у большинства сортов расположены изогнутые шипы. Встречаются виды, у которых шипы отсутствуют. Верхняя поверхность листа темно-зеленая, с нижней стороны он покрыт мелкими белесыми чешуйками, придающими ему серебристый цвет. Благодаря этим чешуйкам растение способно накапливать влагу из окружающего воздуха, а в засушливый период испарять ее. Длина листьев у ананаса сильно колеблется. У основания розетки они мелкие. По мере роста последующие листья увеличиваются и порой достигают в длину 70-140 см, в ширину - 3-6 см. Листья, расположенные у основания соцветия, намного мельче и имеют ярко выраженный красноватый оттенок.

  • 47. Анатомия
    Другое Биология

    В длинных костях различают концы, extremitates, и среднюю часть - тело. corpus. Конец, который располагается ближе к туловищу, называют проксимальным концом, extermitas proximalis. а конец этой же кости, занимающий в скелете более отдаленное от туловища положение, называют дистальным концом, extremitas distalis. На поверхности костей имеются различной величины и формы возвышения, углубления, площадки, отверстия: отростки, processus, выступы, apophyses, ости, spinae, гребни. cristae, бугры, tubera, бугорки, tubercula, шероховатые линии, ряд других образований. В связи с особенностями процесса развития костей дистальному, как и проксимальному, суставному концу кости дают название эпифиза, epiphysis, средней части кости - диафиза. diaphysis, и каждому концу диафиза - метафиза melaphysis (meta - позади, после). В течение всего периода детства и юности (до 18-25 лет) между эпифизом и метафизом сохраняется прослойка хряща (пластинка роста) - эпифизарный хрящ; за счет размножения его клеток кость растет в длину. После окостенения участок кости, заместивший этот хрящ, сохраняет название метафиза. На распиле почти каждой кости можно различить компактное вещество, substantia compacta, составляющее поверхностный слой кости, и губчатое вещество, substantia spongiosa. образующее в кости более глубокий слой. В середине диафиза трубчатых костей имеется различной величины костномозговая полость, cavum medullare, в которой, как и в ячейках губчатого вещества, находится костный мозг. Губчатое вещество костей свода черепа, залегающее между двумя (наружной и внутренней, lamina externa et interna) пластинками компактного вещества, получает название диплоэ diploe (двойное)

  • 48. Анатомия и физиология пищеварительной системы человека
    Другое Биология

    В регуляции всасывания углеводов в тонкой кишке участвуют различные факторы, особенно железы внутренней секреции. Всасывание глюкозы усиливается гормонами надпочечников, гипофиза, щитовидной и поджелудочной желез. Всосавшиеся в кишечнике моносахариды поступают в печень. Здесь значительная их часть задерживается и превращается в гликоген. Часть глюкозы попадает в общий кровоток и разносится по организму и используется как источник энергии. Некоторая часть глюкозы превращается в триглицериды и откладывается в жировых депо (органах накопления жиров печень, подкожный жировой слой и т. п.). Под действием панкреатической липазы в полости тонкой кишки из сложных жиров образуются диглицериды, а затем моноглицериды и жирные кислоты. Кишечная липаза завершает гидролиз липидов. Моноглицериды и жирные кислоты с участием солей желчных кислот переходят в кишечные эпителиоциты через мембраны с помощью активного транспорта. В кишечных эпителиоцитах происходит распад сложных жиров. Из триглицеридов, холестерина, фосфолипидов и глобулинов образуются хиломикроны мельчайшие жировые частицы, заключенные в липопротеиновую оболочку. Хиломикроны покидают эпителиоциты через мембраны, переходят в соединительно-тканные пространства ворсинок, оттуда они с помощью сокращений ворсинки переходят в ее центральный лимфатический сосуд, таким образом, основное количество жира всасывается в лимфу. В нормальных условиях в кровь поступает небольшое количество жира.

  • 49. АНАТОМИЯ КОСТИСТЫХ РЫБ
    Другое Биология

    Дерма состоит из нескольких слоев соединительной ткани, которая богата кровеносными сосудами и нервами. В дерме находятся органы чувств и клетки с красящим веществом, придающим окраску телу, которая помогает рыбе в борьбе за существование. Важное значение имеет маскировочная окраска, зависящая от образа жизни рыбы. Так у рыб открытой воды темная окраска спины и светлая брюха, у жителей зарослей - поперечные темные полосы на теле, у придонных рыб пятнистая спина. Блестящая окраска всего тела или блестящие ярким цветом полосы стайных рыб облегчают им сохранять строй или быстро собраться вместе после нападения хищника. Некоторые виды рыб меняют свою окраску на более яркую с различными полосами и пятнами в период нереста и ухода за потомством, что облегчает малькам поиск родителей. Дерма голая или покрыта, у большинства декоративных рыб, чешуей, представляющей собой тонкие, округлые пластины, лежащие в кожных кармашках и защищающих тело рыбы от повреждений. Чешуя расположена продольными и поперечными рядами и черепицевидно покрывает друг друга. У некоторых видов рыб вместо чешуи тело покрыто костными пластинками. Чешуйный покров у отдельных видов рыб различен и характеризующая его формула, показывающая число чешуй в средней продольной линии тела используется в этой книге. Так напр. ll 45, говорит о том, что в среднем продольном ряду тела рыбы имеется 45 чешуй.

  • 50. Анатомия растений
    Другое Биология

    Клетка. Растительная клетка состоит из студенистой протоплазмы, окруженной жесткой оболочкой (клеточной стенкой), а последняя главным образом из секретируемых протоплазмой целлюлозы и пектиновых веществ. Во многих клетках после завершения их роста на внутренней стороне исходной (первичной) клеточной стенки откладывается т.н. вторичная. Протоплазма это смесь воды, белков, сахаров, жиров, кислот, солей и многих других веществ. Распределенные в правильных соотношениях по различным частям клетки, они обеспечивают протекание биохимических процессов, т.е. жизненных функций. Под микроскопом видно, что протоплазма подразделяется на ядро и цитоплазму, в которой находятся пластиды. Ядро это более или менее сферическое тельце, окруженное двойной мембраной. Оно координирует химические процессы в клетке и содержит ее наследственный материал. Цитоплазма вязкое вещество, содержащее сложную сеть структур и более крупные образования, в т.ч. свойственные только растениям пластиды. В бесцветных пластидах (лейкопластах) запасаются питательные вещества, в зеленых (хлоропластах) идет фотосинтез сахаров. В старых клетках центральную часть занимает вакуоль окруженное мембраной скопление водянистой жидкости, в которой растворены различные вещества. При этом протоплазма оттеснена на периферию в виде тонкого слоя, примыкающего к клеточной стенке. От клеток с описанным выше строением ведут свое происхождение все прочие их типы, встречающиеся в растениях.

  • 51. Анатомія і фізіологія
    Другое Биология

    Лицьовий (n. Facialis), по функції змішаний, складається з рухових нервових соматичних волокон, секреторних, парасимпатичних волокон, чутливих смакових волокон. Рухові волокна відходять від ядра лицьового нерва, що знаходиться в мозку, а саме в сірій речовині ромбоподібної ямки. Секреторні парасимпатичні і чутливі смакові волокна входять в склад проміжного нерва, який має парасимпатичне і чутливі ядра в мосту і виходять з мозку разом з лицьовим нервом. Корінці лицьового нерва на основі (поверхні) мозку виходять в мостомозочковому куті (між мостом і довгастим мозком та мозочком) на задньому краї моста. Потім він проникає у внутрішній слуховий прохід (porus acusticus internus) і вступає в лицьовий канал (canalis facialis) скроневої кістки, проходить по внутрішній стінці барабанної порожнини, далі виходить з каналу і через шилососкоподібний отвір виходить з порожнини черепа. По виходу із foramen stylomastoideum лицьовий нерв вступає в товщу привушної слинної залози і розділяється на свої кінцеві гілки. На шляху в однойменному каналі скроневої кістки n. Facialis віддає такі нерви: n. petrosus major великий камянистий нерв (секреторний нерв), нерв іде до залоз слизової носа і піднебіння, частина волокон досягає слізну залозу. n. stapedius (мязовий), іннервує m. stapeddius . chorda tympani (барабанна струна) по функції змішаний, проникає в барабанну порожнину.

  • 52. Анаэробные процессы
    Другое Биология

    Превращение глюкозы гетероферментативными бактериями происходит по-иному, что обуславливается своеобразием комплекса ферментов у этих бактерий. Из-за отсутствия у них фермента альдолазы изменяется начальный путь превращения глюкозы. После фосфорилирования гексоза окисляется и декарбоксилируется, превращаясь в пентозофосфат. Последний расщепляется на фосфоглицериновый альдегид и ацетилфосфат. Фосфоглицериновый альдегид превращается в пировиноградную кислоту, которая затем восстанавливается в молочную. Ацетилфосфат дефосфорилируется и превращается в уксусную кислоту или восстанавливается в этиловый спирт. Таким образом, конечным акцептором водорода в этом типе брожения служат пировиноградная кислота и уксусный альдегид.

    • Возбудители молочнокислого брожения. Молочнокислые бактерии имеют круглую, слегка овальную или палочковидную форму. Диаметр коков варьируется у отдельных видов от 0,5 до 1,5 мкм. Кокки располагаются попарно или цепочками (стрептококки) различной длины. Размеры палочковидных бактерий колеблются от 1 до 8 мкм. Клетки одиночные или отделенные в цепочки.
  • 53. Анаэробные сообщества микроорганизмов, разрушающих ароматические ксенобиотики
    Другое Биология
  • 54. Антибиотики
    Другое Биология

    Место приложения действия. Антибиотики отличаются друг от друга не только по химической структуре, но и по месту приложения действия на микробную клетку. Действие антибиотиков, применяемых в низких концентрациях, обычно направлено на специфические особенности жизнедеятельности патогенных микроорганизмов. Клеточные стенки бактерий и плесневых грибков сильно отличаются от клеточной оболочки животных клеток, и многие нетоксичные антибиотики блокируют образование именно клеточных стенок. Так действуют пенициллин, бацитрацин, циклосерин и цефалоспорины, применяемые в клинике при бактериальных инфекциях, а также гризеофульвин, который используется при кожных грибковых заболеваниях. Особо важную роль в жизнедеятельности бактериальной клетки играет ее плазматическая мембрана, расположенная под клеточной стенкой. Она регулирует прохождение в клетку питательных веществ и выход продуктов выделения, в ней протекают многие ферментативные процессы. Антибиотик полимиксин связывается с клеточной мембраной многих грамотрицательных бактерий и нарушает ее функцию. Тироцидин обладает химическими свойствами детергента и разрушает мембрану. На нее воздействует и стрептомицин: вновь синтезируемая мембрана оказывается дефектной, и клетка теряет жизненно важные для себя компоненты. Нистатин, связываясь с клеточными мембранами различных дрожжевых и плесневых грибков, приводит к потере их клетками необходимого элемента калия. Во всех живых клетках происходит синтез белка. Хлорамфеникол специфически блокирует этот процесс у многих бактерий. Тетрациклины тоже блокируют белковый синтез, но не менее важной стороной их эффекта являются образование комплексов с металлами и влияние на связывание кальция, магния и марганца в клетке. На синтез белка воздействует также эритромицин. Изучение механизмов действия различных антибиотиков дало много полезных сведений о биохимических процессах, протекающих в клетках микроорганизмов. Даже те антибиотики, которые не применяются в лечебных целях, могут использоваться как важный инструмент биохимических исследований.

  • 55. Антигени, їх властивості та будова
    Другое Биология

    Цитохроми с - це гемовмісні білки дихального ланцюга мітохондрій з молекулярною масою 13 КДа, складаються із близько 100 амінокислотних залишків. Вони з'явились дуже рано в еволюції живого світу, перші цитохроми с зустрічаються у бактерій. Структура білка виявилася настільки вдалою, що збереглася у принципі до вищих тварин. Цитохроми ссавців відрізняються між собою окремими амінокислотними залишками, тобто можуть бути розглянуті як точкові мутанти. Було знайдено прямий зв'язок між імуногенністю цитохрому с та кількістю залишків, що відрізняли антиген від гомологічного цитохрому с реципієнта. Але стосовно специфічності антитіл, що вироблялися, цей зв'язок не виявився абсолютним. Так, кролі, імунізовані власним цитохромом, модифікованим глутаровим альдегідом, виробляли антитіла проти епітопів власного цитохрому. Коли тварин різних видів імунізували одним типом цитохрому, то антитіла вироблялися проти одних і тих самих ділянок. Тоді стали розглядати інший принцип імунодомінантності - зв'язок із структурними особливостями антигену, доступністю, зарядом, специфічним розташуванням на згині подіпептидного ланцюга. Було запропоновано алгоритми пошуку імунодомінантних ділянок за принципами гідрофільності та атомної рухливості. Подальші експерименти виявили зв'язок гідрофільності і рухомості із еволюційною варіабільністю: амінокислотні заміни, що закріпилися в еволюції, не повинні порушувати біологічні функції цитохрому с і тому локалізувалися саме у поверхневих, найбільш гнучких ділянках, де поява іншої амінокислоти найбільш безпечна і може бути компенсована за рахунок гнучкості молекули.

  • 56. Антисептик
    Другое Биология

    Металлсодержащие соединения. Эта группа веществ представляет интерес потому, что включает ряд соединений, обладающих высокоизбирательным или специфическим действием. Поскольку степень их токсического действия на ткани организма и на микробы сильно различается, эти соединения можно использовать при инфекциях таких чувствительных систем, как глаза или кровь. Ртуть, висмут и мышьяк в составе различных органических и неорганических веществ издавна с успехом применялись при сифилисе. Современные средства ацетарсол (применяемый при амебной дизентерии), а также трипарсамид (используемый при африканской сонной болезни) являются аналогами знаменитых мышьяковистых соединений Эрлиха сальварсана и неосальварсана (антисифилитических препаратов). Пятивалентная сурьма активна против возбудителя лейшманиоза. Однопроцентный раствор нитрата серебра обладает высокоизбирательным действием против гонококков и поэтому широко используется в качестве глазного средства для профилактики гонорейной слепоты у новорожденных. Дешевым и мощным бактерицидным средством является бихлорид ртути; его иногда применяют в высоких разведениях (0,1% или меньше) и как антисептик. К менее опасным и не столь раздражающим ртутным антисептикам относятся синтетические органические соединения мертиолат, метафен, а также красный краситель хромистая ртуть.

  • 57. Антитела
    Другое Биология

    К любым антигенам в организме животного изначально существуют антитела. Это предполагает, что каждый организм продуцирует миллионы различных иммуноглобулинов, различающихся своими центрами связывания антигенов. Такое разнообразие обеспечивается несколькими механизмами. Лёгкие и тяжёлые цепи молекул антител кодируются несколькими типами генных сегментов: лёгкая цепь - тремя типами сегментов (V, J, C), тяжёлая - четырьмя (V, D, J, C). В геноме обычно присутствует от нескольких до нескольких сотен сегментов каждого типа, несколько различающихся по нуклеотидной последовательности. Для синтеза цельного полипептида (лёгкой или тяжёлой цепи) необходимо объединение нуклеотидных последовательностей сегментов каждого типа. Такое объединение происходит сначала на уровне ДНК (соматическая рекомбинация), а затем на уровне матричных РНК (сплайсинг). В результате образуется огромное количество вариантов мРНК и соответственно полипептидных цепей. Во время соматической рекомбинации и сплайсинга могут происходить вставки и делеции нуклеотидов, что вместе с повышенной частотой мутаций в генах антител ещё больше повышает разнообразие этих уникальных по своим свойствам белков.

  • 58. Антропный принцип и мега-история Вселенной
    Другое Биология

    Антропный принцип вовсе не изобретение второй половины ушедшего XX столетия, как может показаться при первом рассмотрении, он так же стар, как вся известная нам западноевропейская цивилизация. Достаточно вспомнить древнегреческих мудрецов с их изречениями: «Познай самого себя, и ты познаешь богов и Вселенную» (Солон), «Человек мера всех вещей: существующих, что существуют, несуществующих, что не существуют» (Протагор) или древнекитайского мыслителя Лаоцзы с одной из его многочисленных сентенций: «Тот, кто знает других мудрец. Кто знает себя посвященный» (общепризнанные посвященные Рама, Кришна, Гермес, Моисей, Орфей, Пифагор, Платон, Иисус), а в Новое время вспомнить аксиому французского мистика Клода де Мартена: «Должно изучать Природу по человеку, а не человека по Природе». С сожалением приходится признать, что, замысленная (заповеданная) в античное время, антропная программа в западной культуре в течение всего исторического времени не выполнялась. Причиной тому стал, во-первых, принятый и жестко контролируемый со средневековья церковью креационизм, получивший и в науке официальный статус. Способствовало неисполнению античной антропной заповеди, во-вторых, утвердившееся в науке картезианское мышление, рассматривающее человека как элементарный механизм, по простоте (или сложности) сравнимый, скажем, с часами. В оккультизме же одной из ветвей мистических учений, конечно, на задворках официальной науки и культуры, напротив, идея о превосходстве человека над остальным миром поддерживалась. Кстати, как отмечает Ф. Капра в «Дао физики», первым европейским мистиком можно считать Гераклита, но мистические его взгляды не получили развития, оказались невостребованными и были заменены впоследствии рационалистическими взглядами Аристотеля, получившими в средние века божественный статус. В развитие античных антропных заповедей мистиками утверждалось, что человек содержит в своем существе проявления трех миров или трех начал: материального, происходящего из физического мира; жизненного, исходящего из вселенной (астрала); и духовного начала (бессмертного духа, называемого в философии душой), проистекающего из мира божественного. Тем самым, человек подчиняется всем законам, действующим в этих трех мирах, и поименован поэтому микрокосмом, или маленьким миром, будучи точным отражением макрокосма или Вселенной.

  • 59. Антропогенез
    Другое Биология

    Выделяют 4 этапа расообразования. На первом этапе имело место формирование первичных очагов расообразования и основных расовых стволов западного (европеоиды, негроиды и австралоиды) и восточного (монголоиды и американоиды). Хронологически это приходится на эпохи низшего и среднего палеолита (около 200 тыс. лет назад), т.е. совпадают с возникновением человека современного типа. Следовательно, основные расовые сочетания в западных и восточных районах Старого Света складывались одновременно с оформлением признаков присущих современному человеку, а также с переселением части человечества в Новый Свет. На втором этапе выделение вторичных очагов расообразования и формирования ветвей в пределах основных расовых стволов. Хронологически этот этап приходится на верхний палеолит, частично мезолит (около 15-20 тыс. лет назад). На третьем этапе расообразования происходит становление локальных рас. По времени это канун мезолита и неолита (около 10-12 лет назад). На четвертом этапе возникли четвертичные очаги расообразования и сформировались популяции с углубленной расовой дифференциацией, сходной с современной. Это началось в эпоху бронзы и раннего железа, т.е. в IV-III тысячелетиях до н.э.

  • 60. Антропогенез – процесс исторического развития биологического вида "человек"
    Другое Биология

    Оригинальную гипотезу выдвинул Б.Ф. Поршнев в книге «О начале человеческой истории (Проблемы палеопсихологии)». Согласно ей, древнейшие предки человека - троглодитиды - уровнем своей психической деятельности не отличались от животных. По способу питания они были падальщиками. Стадия «трупоядения» была промежуточной между растительноядностью и хищничеством. Инстинкт раскалывания камнями орехов или моллюсков троглодитиды перенесли на черепа животных, а затем на сами камни. Таким образом, производство каменных орудий у троглодитид не отличалось по сути от деятельности бобров или муравьев. Вместе с тем, у троглодитид значительно развилась способность к суггестии - психическому внушению, что позволяло им побуждать других индивидов действовать выгодным для внушающего образом. Развилась также и контрсуггестия - вторая сигнальная система, речь. С возникновением речи Б.Ф. Поршнев связывает возникновение собственно людей. Люди отличаются от троглодитид не только наличием речи, но также активной охотой, сознательной трудовой деятельностью и наличием искусства. Однако первым людям приходилось тяжело, поскольку троглодитиды использовали их с помощью аппарата интердикции - способности вызывать нерациональные имитативные рефлексы. Поэтому у части первых людей усилилась способность к суггестии для борьбы с троглодитидами. Другая же часть, во избежание контактов с троглодитидами начала мигрировать по планете. В новых условиях люди приспосабливались как биологически, так и культурно. Когда же Земля оказалась полностью заселенной, началась откатная волна миграций, войны же с троглодитидами стали успешными благодаря достигнутому техническому прогрессу.