Информация по предмету Биология
-
- 121.
Биогеохимические круговороты основных химических элементов
Другое Биология Важной составной частью круговоротов является ионный и твердый сток. Круговорот химических элементов проходит, как правило, сразу в нескольких сопредельных оболочках Земли (атмосфере и гидросфере, гидросфере и педосфере) либо во всех трех геосферах одновременно. Надежность и постоянство осуществления круговоротов обеспечиваются регулярным обменом веществ и энергией между геосферами. Такого рода направленная связь наглядно проявляется на примере ионного стока, представляющего собой процесс выноса реками с суши химических элементов в ионном растворенном состоянии в Мировой океан. Поступившие в ионной форме химические элементы, как и на суше, в водной среде подвергаются воздействию живых организмов, продолжая круговорот. Миграция химических элементов в растворенном состоянии представляет собой гигантский планетарный процесс.
- 121.
Биогеохимические круговороты основных химических элементов
-
- 122.
Биогеохимия: история и современность
Другое Биология %20%d0%b2%20%d0%bd%d0%b0%d1%87%d0%b0%d0%bb%d0%b5%20XIX%20%d0%b2.,%20%d0%b0%20%d0%b2%20%d0%b3%d0%b5%d0%be%d0%bb%d0%be%d0%b3%d0%b8%d0%b8%20<http://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F>%20%d0%bf%d1%80%d0%b5%d0%b4%d0%bb%d0%be%d0%b6%d0%b5%d0%bd%20%d0%b0%d0%b2%d1%81%d1%82%d1%80%d0%b8%d0%b9%d1%81%d0%ba%d0%b8%d0%bc%20%d0%b3%d0%b5%d0%be%d0%bb%d0%be%d0%b3%d0%be%d0%bc%20%d0%ad%d0%b4%d1%83%d0%b0%d1%80%d0%b4%d0%be%d0%bc%20%d0%97%d1%8e%d1%81%d1%81%d0%be%d0%bc%20<http://ru.wikipedia.org/wiki/%D0%AD%D0%B4%D1%83%D0%B0%D1%80%D0%B4_%D0%97%D1%8E%D1%81%D1%81>%20%d0%b2%201875%20%d0%b3%d0%be%d0%b4%d1%83%20<http://ru.wikipedia.org/wiki/1875_%D0%B3%D0%BE%D0%B4>.%20%d0%ad%d1%82%d0%b8%d0%bc%20%d1%82%d0%b5%d1%80%d0%bc%d0%b8%d0%bd%d0%be%d0%bc%20%d0%ad.%20%d0%97%d1%8e%d1%81%d1%81%20%d0%be%d0%b1%d0%be%d0%b7%d0%bd%d0%b0%d1%87%d0%b8%d0%bb%20%d1%81%d1%84%d0%b5%d1%80%d1%83%20%d0%be%d0%b1%d0%b8%d1%82%d0%b0%d0%bd%d0%b8%d1%8f%20%d0%be%d1%80%d0%b3%d0%b0%d0%bd%d0%b8%d0%b7%d0%bc%d0%be%d0%b2.%20%d0%92.%d0%98.%20%d0%92%d0%b5%d1%80%d0%bd%d0%b0%d0%b4%d1%81%d0%ba%d0%b8%d0%b9%20%d1%80%d0%b0%d0%b7%d1%80%d0%b0%d0%b1%d0%be%d1%82%d0%b0%d0%bb%20%d0%bf%d1%80%d0%b5%d0%b4%d1%81%d1%82%d0%b0%d0%b2%d0%bb%d0%b5%d0%bd%d0%b8%d0%b5%20%d0%be%20%d0%b1%d0%b8%d0%be%d1%81%d1%84%d0%b5%d1%80%d0%b5%20%d0%ba%d0%b0%d0%ba%20%d0%be%20%d0%bd%d0%b0%d1%80%d1%83%d0%b6%d0%bd%d0%be%d0%b9%20%d0%be%d0%b1%d0%be%d0%bb%d0%be%d1%87%d0%ba%d0%b5%20%d0%97%d0%b5%d0%bc%d0%bb%d0%b8,%20%d0%be%d1%85%d0%b2%d0%b0%d1%87%d0%b5%d0%bd%d0%bd%d0%be%d0%b9%20%d0%b3%d0%b5%d0%be%d1%85%d0%b8%d0%bc%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%be%d0%b9%20%d0%b4%d0%b5%d1%8f%d1%82%d0%b5%d0%bb%d1%8c%d0%bd%d0%be%d1%81%d1%82%d1%8c%d1%8e%20%d0%b6%d0%b8%d0%b2%d0%be%d0%b3%d0%be%20%d0%b2%d0%b5%d1%89%d0%b5%d1%81%d1%82%d0%b2%d0%b0.">Биосфера. Термин «биосфера» был введён в биологии Жаном-Батистом Ламарком <http://ru.wikipedia.org/wiki/%D0%9B%D0%B0%D0%BC%D0%B0%D1%80%D0%BA,_%D0%96%D0%B0%D0%BD_%D0%91%D0%B0%D1%82%D0%B8%D1%81%D1%82> в начале XIX в., а в геологии <http://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D1%8F> предложен австрийским геологом Эдуардом Зюссом <http://ru.wikipedia.org/wiki/%D0%AD%D0%B4%D1%83%D0%B0%D1%80%D0%B4_%D0%97%D1%8E%D1%81%D1%81> в 1875 году <http://ru.wikipedia.org/wiki/1875_%D0%B3%D0%BE%D0%B4>. Этим термином Э. Зюсс обозначил сферу обитания организмов. В.И. Вернадский разработал представление о биосфере как о наружной оболочке Земли, охваченной геохимической деятельностью живого вещества.
- 122.
Биогеохимия: история и современность
-
- 123.
Биогеоценоз
Другое Биология Пример экосистемы, где средой жизни организмов служит вода, известные всем пруды. На мелководье прудов поселяются укореняющиеся или крупные плавающие растения (камыш, кувшинки, рдесты). По всей толще воды на глубину проникновения света распространены мелкие плавающие растения, в основной массе водоросли, называемые фитопланктоном. Когда водорослей много, вода становится зеленой, как говорят, «цветет». В фитопланктоне много сине-зеленых, а также диатомовых и зеленых водорослей. Личинки насекомых, головастики, ракообразные, растительноядные рыбы питаются живыми растениями или растительными остатками, хищные насекомые и рыбы поедают разнообразных мелких животных, а крупные хищные рыбы охотятся и за растительноядными и за хищными, но более мелкими рыбами. Организмы, разлагающие органические вещества (бактерии, жгутиковые, грибы), распространены по всему пруду, но особенно их много на дне, где накапливаются остатки мертвых растений и животных. Мы видим, как непохожи и по внешнему виду, и по видовому составу популяций экосистемы леса и пруда. Среда обитания видов разная: в лесу воздух и почва; в пруду воздух и вода. Однако функциональные группы живых организмов однотипны. Продуценты в лесу деревья, кустарники, травы, мхи; в пруду плавающие растения, водоросли и сине-зеленые. В состав консументов в лесу выходят звери, птицы, насекомые и другие беспозвоночные животные (последние населяют почву и подстилку). В пруду к консументам относятся насекомые, разные земноводные, ракообразные, растительноядные и хищные рыбы. Редуценты (грибы и бактерии) представлены в лесу наземными, в пруду водными формами.
- 123.
Биогеоценоз
-
- 124.
Биогеоценоз или экосистемы
Другое Биология Я выбрал эту тему, так как мог самостоятельно описать системы, окружающие нас практически везде. Эта работа наглядно демонстрирует, то что какой бы маленькой и незначительной казалась среда обитания организмов, но она есть маленькая, но составная часть того где мы живем. И помнить то что мы зависим от среды обитания, а ни она от нас. В поддержку моих доводов можно привести один пример:
- 124.
Биогеоценоз или экосистемы
-
- 125.
Биогеоценозы
Другое Биология Популяцией в биологии называют совокупность свободно скрещивающихся особей одного вида, которые длительно существуют в определенной части ареала относительно обособленно от других совокупностей того же вида. К факторам, вызывающим изменения в численности популяций относятся следующие: охота (то есть деятельность человек, направленная на убийство одной или нескольких особей с целью получения шкуры, мяса или чисто спортивного интереса), рыбалка (то же самое, только на водном пространстве). Но самый важный фактор это баланс рождаемости и гибели. В результате взаимных приспособлений разных видов в биогеоценозе устанавливается определенный для каждого вида уровень колебаний. Для одних видов колебания не велики, для других могут быть значительными, и вид редкий в данном году, в следующем году может стать обычным, или наоборот. К примеру, уменьшение пищи ведет к уменьшению популяции. В следующем году пищи много популяция увеличивается. А увеличение популяции быстрыми темпами очень скоро тормозится, так как резко увеличивается число паразитов. Очень часто на численность влияет погода. Процесс саморегуляции в дубраве проявляется в том, что все разнообразное население существует совместно, не уничтожая полностью друг друга, а лишь ограничивая численность особей каждого вида определенным уровнем. К примеру, при отсутствии ограничивающих факторов численность любого вида вредных насекомых возросла бы очень быстро и привела ба к разрушению экологической системы. Наблюдения показывают, что некоторая часть потомства погибает под воздействием различных неблагоприятных условий погоды. Но основную массу уничтожают другие члены биогеоценоза: хищные и паразитические насекомые, птицы, болезнетворные микроорганизмы. Таким образом жить остается столько особей, сколько необходимо для регуляции в биогеоценозе. Ограничивающее действие экологической системы все же не исключает полностью случаев массового размножения отдельных видов, которое бывает связано с сочетанием благоприятных факторов среды. Однако после массовой вспышки особенно интенсивно проявляются регулирующие факторы (паразиты, болезнетворные бактерии и др.), которые снижают численность вредителей до средней нормы.
- 125.
Биогеоценозы
-
- 126.
Биография и научные открытия Джеймса Уотсона
Другое Биология Причина этого лежит в двойственности материала, из которого построена книга. Уже в самом ее названии эта двойственность аллегорически отражена. Туже, чем две нити в молекуле ДНК, закручиваются в повествовании две ведущие темы. Одна из них собственно научная, описание этапов выдающегося научного открытия. Вторая тема это материал типа «домашней хроники», где «домом» является жизнь научного коллектива и даже шире мирового сообщества ученых, в котором стираются границы городов, стран, континентов. На страницах книги спиралью свиваются шаги научного поиска и человеческие отношения; характеристика химической структуры макромолекул и оценка (до чего субъективная!) характеров действующих лиц; движущая сила научной интуиции и побуждения далеко не возвышенного свойства. Поскольку вторая тема затрагивала не мудреные химические представления, а касалась черт человеческой натуры, близко знакомых всякому и притом относившихся не к вымышленным героям, а к реальным лицам, то не удивительно, что именно эта сторона книги явилась приманкой для широкого читателя, придала ей характер сенсационности. Прямота суждений автора, его большая искренность (порой, правда, граничащая с цинизмом), живость языка, скульптурная выпуклость образов (нередко с элементом гротеска или, в лучшем случае, дружеского шаржа) и в особенности его полная беспощадность по отношению к самому себе (по меткому замечанию Андрэ Львова, автора одной из по-настоящему блистательных рецензий на книгу Уотсона, последний «произвел над собой судебно-медицинское вскрытие») все это служит достаточным основанием, чтобы отнестись снисходительно к рискованным и далеко не всегда необходимым экскурсам личного характера. Уотсон в этой части своей книги словно задался целью приложить к себе и к окружающим его собратьям-ученым старый афоризм: «Homo sum et nihil humanum a me alienum esse puto» «Я человек, и ничто человеческое мне не чуждо». Мы помним, что у Достоевского черт в беседе с Иваном Карамазовым меняет форму этого изречения, подставляя слово «сатана» вместо слова «человек». Новая форма была бы уместна и для характеристики позиции Уотсона: «Мы ученые, и ничто человеческое нам не чуждо».
- 126.
Биография и научные открытия Джеймса Уотсона
-
- 127.
Биоиндикация почвы по беспозвоночным
Другое Биология Почвенная зоология исследует механизмы миграции экотоксикантов в почвах и биологической деградации их. Экотоксикант токсичное и устойчивое в условиях окружающей среды вещество, способное накапливаться в организмах до опасных уровней концентрации (соединения тяжелых металлов, мышьяка, фтора, углеводородов). Загрязняющие вещества накапливаются в биомассе и мигрируют по пищевым цепям, поэтому в экотоксикологических исследованиях необходимо определять величины биомассы различных групп организмов почвы. В разрушении химических веществ в почве участвуют различные группы организмов: животные, бактерии, грибы, актиномицеты, растения. Они поглощают и перерабатывают химические соединения. В этом блоке исследований выделяются работы казанских педобиологов (Т. И. Артемьева и др.) по изучению роли почвенных беспозвоночных в процессах естественного восстановления биогеоценозов на загрязненных при нефтедобыче территориях и биологической рекультивации. Исследования в производственных условиях дополнены полевыми опытами в почвах лесотундровых, средне- и южно-таежных, лесостепных ландшафтов и в сухих субтропиках. Установлена четкая корреляция естественного восстановления комплекса педобионтов со скоростью распада нефти в почве и техногенной сукцессией растительности. Интенсивность процессов увеличивается с севера на юг: на севере они лимитируются низкими температурами, а в сухих субтропиках недостатком влаги. Необходимо отметить одно из главных отличий экотоксикологии от классической токсикологии она исследует реакцию популяции, сообщества и экосистемы на воздействие загрязняющего вещества, а не отдельного организма.
- 127.
Биоиндикация почвы по беспозвоночным
-
- 128.
Биологическая мембрана
Другое Биология Значение молекулярного кислорода для процессов жизненной динамики не ограничивается только его участием в обеспечении живых клеток энергией. Без кислорода невозможен биосинтез и, соответственно, обновление им же окисленных важнейших структурных компонентов биомембран - стеринов и ненасыщенных жирных кислот, входящих в состав фосфолипидов. Необходимость одновременного и согласованного осуществления всех перечисленных функций определяет особое, системное значение молекулярного кислорода для дифференцированных клеток, как "общественных, коллективных существ", образующих ткани и органы многоклеточных организмов. Ярким и наглядным проявлением процессов жизненной динамики, наиболее выраженным у нормальных и опухолевых клеток организма человека и животных, являются движения протоплазмы, которые можно наблюдать при помощи светового микроскопа. Клетки, как отдельные так и в составе тканей, непрерывно изменяют свои очертания, могут замирать при раздражении, пульсируют, образуя впячивания и выступы и создавая тем самым, как заметили Г. М. Франк и В. Г. Астахова, впечатление непрерывного кипения. Аналогично ведут себя также клеточные органеллы, и прежде всего митохондрии и ядра живых клеток. Из-за ограниченной разрешающей способности светового микроскопа доказательства непрерывного движения мембранных образований живой клетки могут быть получены лишь косвенным путем. При этом, как отметил Г. М. Франк еще в 1962 году, впервые, по-видимому, осознавший функциональное и регуляторное значение структурной подвижности для жизнедеятельности клетки: "Чем более тонкий метод с наибольшей разрешающей способностью мы применяем, тем шире обнаруживаются отсутствия стабильности клеточных структур и непрерывное их изменение". Любые воздействия на живую клетку и изменения в окружающей ее среде (которые представляют собой сигналы, несущие информацию извне) приводят к соответствующим изменениям процессов жизненной динамики, которые компенсируют эти внешние воздействия. Таким образом обеспечивается адекватность взаимодействия клетки, как простейшей биологической системы, с ее окружением, то есть адаптация клетки к условиям внешней среды. Нарушения естественного протекания процессов жизненной динамики ведут к патологическим изменениям живой клетки. В случае продолжительности таких нарушений под воздействием различных физических и химических канцерогенных факторов, длительной гипоксии клеток, оказывающихся в условиях вяло протекающих, хронических воспалительных процессов, какими являются практически все предраковые состояния, а также в случаях биосинтеза аномальных для дифференцированной клетки белков в результате включения генома онкогенных вирусов в клеточный геном, происходит дезорганизация клетки и вынужденный переход ее на более примитивный уровень организации, характерный для всех делящихся клеток эукариотов на ранних этапах дифференцировки, то есть происходит злокачественное перерождение клетки. Единой общей чертой, объединяющей более 700 известных сейчас канцерогенных факторов, абсолютно различных по своей физической и химической природе (например, химические канцерогены и ионизирующее излучение, онковирусы, физическая травма и вживление пластмассовых пластинок, влияние геопатогенных зон, на счет воздействия которых сейчас относят более 50% злокачественных опухолей), является их дезорганизующее влияние на дифференцированные клетки. С этих позиций достаточно просто объясняется одна из сложнейших загадок онкологии: "Как под влиянием разнообразных по своей природе факторов возникает единый по множеству своих признаков процесс - злокачественная трансформация клеток?" Наиболее характерные особенности такой трансформации описаны в опубликованной автором в 1974 году кислородно-холестериновой гипотезе возникновения рака. Единственным исключением из принципа жизненной динамики является анабиоз у низших организмов и во многом сходные с ним процессы, происходящие при глубоком охлаждении и постепенном отогревании изолированных органов, тканей и отдельных клеток, а также целых организмов. При переходе клетки к анабиозу процессы жизненной динамики в ней почти полностью прекращаются, однако все ее структурные образования временно остаются в целостном, жизнеспособном состоянии, при котором сохраняется возможность возобновления нормальной жизнедеятельности при соответствующих благоприятных условиях. Во всех же других случаях прекращение процессов жизненной динамики неизбежно ведет к дезорганизации и гибели клетки. Все изложенное дает основание заключить, что принцип жизненной динамики определяет главное отличие живого и имеет, по всей видимости характер закона, устанавливающего единственно возможный путь перехода вещества, энергии и информации в организацию, рассматриваемую наряду с ними в качестве третьего составного компонента материи и определяемую с позиций кибернетики как разность между максимальной и текущей неопределенностью системы. Говоря другими словами, организация является мерой дефекта неопределенности системы по уравнению:
- 128.
Биологическая мембрана
-
- 129.
Биологическая нейронная сеть
Другое Биология Классификация предприятий по степени их перспективности - это уже привычный способ использования нейронных сетей в практике западных компаний. При этом нейронная сеть также использует множество экономических показателей, сложным образом связанных между собой. Нейросетевой подход особенно эффективен в задачах экспертной оценки по той причине, что он сочетает в себе способность компьютера к обработке чисел и способность мозга к обобщению и распознаванию. Говорят, что у хорошего врача способность к распознаванию в своей области столь велика, что он может провести приблизительную диагностику уже по внешнему виду пациента. Можно согласиться также, что опытный трейдер чувствует направление движения рынка по виду графика. Однако в первом случае все факторы наглядны, то есть характеристики пациента мгновенно воспринимаются мозгом как "бледное лицо", "блеск в глазах" и т.д. Во втором же случае учитывается только один фактор, показанный на графике - курс за определенный период времени. Нейронная сеть позволяет обрабатывать огромное количество факторов (до нескольких тысяч), независимо от их наглядности - это универсальный "хороший врач", который может поставить свой диагноз в любой области. Кластеризация с помощью нейронных сетей и поиск зависимостей
- 129.
Биологическая нейронная сеть
-
- 130.
Биологическая память
Другое Биология Каждое запоминаемое событие кодируется в ЦНС специфическими последовательностями нуклеотидов в РНК. Хиден провёл ряд работ при помощи изобретённого им микрометода, позволяющего исследовать количество и соотношение нуклеотидов в клетке. Оказалось, что при выработке условного рефлекса у крыс ( балансировка на проволоке, по которой они пробирались к площадке с пищей) увеличивалось отношение нуклеотидов аденина и урацила в РНК некоторых нейронов. В другом исследовании было установлено, что переучивание крыс пользоваться при добывании пищи правой лапой вместо левой и наоборот оказывало влияние на содержание нуклеотидов в нейронах 5-6-го слоя двигательной коры. На основании результатов этих опытов Хиден пришёл к выводу, что под влиянием нервных импульсов происходит перестройка в последовательности нуклеотидов РНК. Это, естественно, сказывается на синтезе белка, в молекулу которого вносится какой-то отпечаток происшедших изменений в молекуле РНК. Молекула белка становится ”чувствительной” к нервным импульсам определённого качества. Она “узнаёт” в дальнейшем эти импульсы и реагирует на них освобождением медиаторных веществ, которые и переносят нервные импульсы с нейрона на нейрон через синаптические связи. В том случае, когда меняется информация, закодированная в нервных импульсах, такого “узнавания” не происходит и передача импульса не осуществляется.
- 130.
Биологическая память
-
- 131.
Биологическая роль гидролиза в процессах жизнедеятельности организма
Другое Биология
- 131.
Биологическая роль гидролиза в процессах жизнедеятельности организма
-
- 132.
Биологическая роль гидролиза в процессах жизнедеятельности организма
Другое Биология Гидролиз белков. Белковые вещества составляют громадный класс органических, то есть углеродистых, а именно углеродисто азотистых соединений, неизбежно встречаемых в каждом организме. Роль белков в организме огромна. Без белков или их составных частей аминокислот не может быть обеспечено воспроизводство основных структурных элементов органов и тканей, а также образование ряда важнейших веществ, как, например, ферментов и гормонов. Белки пищи прежде, чем быть использованы для построения тканей тела, предварительно расщепляются. Организмом используется для питания не сам пищевой белок, а его структурные элементы аминокислоты и, может быть, частично простейшие пептиды, из которых затем в клетках синтезируются специфические для данного вида организма белковые вещества.
- 132.
Биологическая роль гидролиза в процессах жизнедеятельности организма
-
- 133.
Биологическая роль, структура и выделение митохондрий из печени крыс.
Другое Биология Митохондрии печени крысы содержат значительные количества фосфатидилэтаноламина, фосфатидилхолина, инозитфосфатидов, кардиолипина и фосфатидилсерина; содержание плазмалогена и сфингомиелина невелико, иногда они вовсе отсутствуют. Характерное содержание и количественное содержание липидов в митохондриальной мембране, вероятно обусловлены необходимостью поддержания термодинамически устойчивого двойного слоя липидов, образующего остов мембраны, который служит опорой для дыхательных ансамблей. По-видимому, большое значение имеет тот факт, что практически все липиды митохондриальной мембраны экстрагируются смесью хлороформ - метанол. Это указывает на наличие лишь незначительного числа ковалентных связей между липидами и белковыми элементами или даже на полное их отсутствие; этот факт свидетельствует о высокой степени стабилизации липидов и белков мембранных структурах. Крейн показал, что цитохром с соединяется с фосфатидилэтаноламином, образуя устойчивый комплекс. Возможно, что именно такое взаимодействие липид - белок совместно с гидрофобными связями и обеспечивает такую стабилизацию мембранной структуры. Криддл и сотрудники выделили мономерную форму, которую они назвали структурным белком митохондриальной мембраны. При нейтральном рН структурный белок находится в полимерной форме и не растворим в воде. Мономерная форма имеет молекулярный вес около 22000, но тенденция к полимеризации нарушает точность седиментационных и электрофоретических исследований. Структурный белок способен соединяться с чистыми цитохромами а, Ь, и ее образованием растворимых в воде комплексов в молярном отношении 1:1, причем условия этого взаимодействия для каждого случая различны. Предполагается, что в таких комплексах образуются преимущественно гидрофобные связи. Далее, оказалось, что структурный белок соединяется с фосфолипидами. Таким образом, структурный белок способен к взаимодействию с двумя другими основными молекулярными элементами мембраны - с переносчиками электронов и с фосфолипидами. Склонность цитохромов, флавопротеидов и структурного белка к существованию в мономерной и полимерной формах указывает на выраженную тенденцию этих молекул к образованию очень
- 133.
Биологическая роль, структура и выделение митохондрий из печени крыс.
-
- 134.
Биологическая фиксация азота
Другое Биология Клубеньковые бактерии более экономно используют энергию, необходимую для фиксации азота, затрагивая 3-4 г углеводов на 1 г азота, в то время как свободноживущие азотфиксирующие бактерии затрачивают 50 - 100 и более граммов на фиксацию 1 г азота. Это связано с тем, что у
свободноживущих азотфиксаторов фиксация азота происходит в процессе их роста, и потому большое количество энергии потребляется на этот рост. Кроме того, в целях создания благоприятных условий для активности нитрогеназы - фермента, участвующего в фиксации азота, для снижения парциального давления кислорода усиливается дыхание, что связано с затратой энергии. Эти расходы энергии отсутствуют у клубеньковых бактерий, поскольку фиксация азота происходит в бактероидах, клетках, прекративших рост, а внутри клубеньков создаются благоприятные условия
для активности нитрогеназы, в том числе сниженное содержание кислорода. Очень существенно то, что фиксируемый клубеньковыми бактериями азот на 90 - 95% передается бобовым растениям. Бобовые, получая связанный азот от клубеньковых бактерий, не зависят или мало зависят от обеспечения минеральным азотом почвы и потому могут успешно произрастать совместно
с другими растениями на почвах, бедных доступными формами азота.Количество азота, фиксируемого клубеньковыми бактериями бобовых, сильно варьирует от фитоценоза к фитоценозу, а в пределах конкретных фитоценозов может изменяться от года к году. Оно определяется участием
бобовых в фитоценозах, условиями среды и эффективностью соответствующих рас бактерий. Для некоторых лугов в Новой Зеландии с травостоями, где преобладает клевер, отмечена фиксация азотом до 450 - 550 кг/га.
- 134.
Биологическая фиксация азота
-
- 135.
Биологически активные вещества
Другое Биология Имеются два основных витамина D2 и D 3 ; D2 ( С28Н44О) образуется из провитамина эргостерона, распространенного в растениях. D3 (С27Н44О) из провитамина животных тканей 7 дегидрохолестерина. Витамины D2 и D3 одинаково хорошо используются человеком и млекопитающими; птицы усваивают витамин D 2 в 30-60 раз хуже, чем D3. Переход провитаминов в витамины происходит в коже человека и животных под воздействием ультрафиолетовых лучей при ярком солнечном освещении или при облучении кварцевой лампой. Образовавшейся в коже витамин разносится затем по всему телу. Свойством провитаминов превращаться в витамины под действием лучистой энергии широко пользуются при промышленном изготовлении препаратов витаминов. Оба витамина медленно окисляются на воздухе, быстро на свету; при нагоевании до 130-160 гр. Они инактивируются даже в отсудствии кислорода. Из естественных продуктов значительные количества витаминов ( в форме D3 ) содержит лишь рыбий жир ; небольшие количества витаминов находятся в яичном желтке и летнем сливочном масле; остальные животные продукты бедны витамином; в растительных продуктах готового витамина, как правило, совсем нет. При промышленном производстве витамин D2 получают путем облучения эргостерина, извлекаемого из дрожжей или мицелия грибов пенициллиума. D3 - главным образом для нужд птицеводства- изготовляют из морский мидий. Ввиду ограниченного распространения витамина D и недостаточности инсоляции в осенне-зимний сезон необходимо широко применять вето время промышленные препараты витамина, особенно для детей.
- 135.
Биологически активные вещества
-
- 136.
Биологически активные добавки и их роль в укреплении здоровья человека
Другое Биология Процедура экспертизы и гигиенической сертификации проводится в соответствии с приказом МЗ РФ №117 от 15.04.97 «О порядке экспертизы и гигиенической сертификации биологически активных добавок к пище» Центром гигиенической сертификации пищевой продукции Департамента санэпиднадзора МЗ РФ на базе Института питания РАМН (ЦГСПП), а также другими органами и учреждениями, аккредитованными Департаментом государственного санитарно-эпидемического надзора МЗ РФ. Экспертиза БАД включает следующие этапы: оценка сопроводительной документации, характеризующей данную продукцию; определение потребности в проведении необходимых исследований; проведение санитарно-химических, микробиологических или других видов исследований; экспериментальные исследования физиологических, метаболических и токсикологических эффектов, подтверждающих заявленный профиль БАД; в отдельных случаях клинический анализ эффективности; комплексная оценка результатов с учётом полученных в ходе исследований данных; оформление регистрационного удостоверения на БАД, присвоение номера, включение в реестр. Таким образом, если БАД прошла государственную регистрацию, можно быть уверенным, что она:
- Не содержит сильнодействующих и ядовитых веществ, а также растений, на которые отсутствует нормативная документация, либо которые не употребляются в пищу.
- Не содержит растительное и животное сырье, полученное с применением методов генной инженерии, за исключением сырья, на которое получено специальное разрешение МЗ.
- В качестве сырья не были использованы материалы риска, такие как головной и спинной мозг некоторых видов скота, селезенка овец и коз и т.д. (риск передачи прионных инфекций).
- Содержание тяжелых металлов, пестицидов, радионуклидов и микробиологические показатели находятся в пределах нормы.
- Для парафармацевтиков в обязательном порядке проводятся экспериментальные и клинические исследования, подтверждающие их эффективность и безопасность. [5]
- 136.
Биологически активные добавки и их роль в укреплении здоровья человека
-
- 137.
Биологически активные добавки к пище (БАД)
Другое Биология Биологически активные добавки к пище (БАД) если рассматривать их в глобальном аспекте - это накопленные громадным опытом народов всех времен знания целебных свойств растений, объектов животного происхождения и минерального сырья. Еще до нашей эры в странах Востока сложились системы профилактики и терапии, основанные на использовании продуктов из растительного, животного и минерального сырья. Эти методы использовали Гиппократ, Гален, Авиценна и многие другие. Современные технологии позволили выделить из природного сырья чистые вещества и их комплексы, что позволило добиться усиления их эффекта воздействия. В последнее время появилась новая область знаний - фармаконутрициология, которая является пограничной между наукой о питании и фармакологией. Выдающийся отечественный ученый академик А.А. Покровский отмечал, что "…пищу следует рассматривать не только как источник энергии и пластических веществ, но и как весьма сложный фармакологический комплекс". В нашей стране это направление относительно ново, и несмотря на то, что ежегодно проводится множество конгрессов, конференций и симпозиумов, посвященных БАД, они остаются предметом жарких споров в медицинских кругах (1).
- 137.
Биологически активные добавки к пище (БАД)
-
- 138.
Биологически активные пищевые добавки и здоровье
Другое Биология oудовлетворение физиологических потребностей в пищевых веществах больного человека, уменьшив при этом нагрузку на поражённые патологическим процессом метаболические звенья. Так, включение в диету больных сахарным диабетом топинамбура - основного источника фруктозы позволяет удовлетворять потребности организма в углеводах без риска развития гипергликемии. При некоторых врождённых заболеваниях, связанных с недостаточностью ферментных систем, результатом чего является непереносимость ряда продуктов. Например, при фенилкетонурии организм не вырабатывает фермент фенилаланингидроксилазу, катализирующую превращение аминокислоты фенилаланина в тирозин, что приводит к накоплению фенилаланина в тканях и развитию умственной недостаточности. Для предотвращения этого необходимо исключить из диеты продукты, содержащие фенилаланин, то есть применять БАД к пище, содержащей комплекс аминокислот без фенилаланина. Другим примером может служить применение к пище БАД, содержащих комплекс витаминов и минеральных солей, больными глютеновой энтеропатией, недостаток которых связан с исключением из диеты этих больных основных источников витаминов группы В-продуктов из пшеницы, ржи, овса.
- 138.
Биологически активные пищевые добавки и здоровье
-
- 139.
Биологически мембраны
Другое Биология 1.4. Транспорт глюкозы. Транспорт глюкозы может происходить по типу как облегченной диффузии, так и активного транспорта, причем в первом случае он протекает как унипорт, во втором как симпорт. Глюкоза может транспортироваться в эритроциты путем облегченной диффузии. Константа Михаэлиса (Кm) для транспорта глюкозы в эритроциты составляет приблизительно 1,5 ммоль/л (то есть при этой концентрации глюкозы около 50% имеющихся молекул пермеазы будет связано с молекулами глюкозы). Поскольку концентрация глюкозы в крови человека составляет 4-6 ммоль/л, поглощение ее эритроцитами происходит практически с максимальной скоростью. Специфичность пермеазы проявляется уже в том, что L-изомер почти не транспортируется в эритроциты в отличие от D-галактозы и D-маннозы, но для достижения полунасыщения транспортной системы требуются более высокие их концентрации. Оказавшись внутри клетки, глюкоза подвергается фосфорилированию и более не способна покинуть клетку. Пермеазу для глюкозы называют также D-гексозной пермеазой. Она представляет собой интегральный мембранный белок с молекулярной массой 45кД.
- 139.
Биологически мембраны
-
- 140.
Биологические особенности облепихи крушиновидной
Другое Биология Применение в других областях. Зола из древесины облепихи - источник поташа и соды. Кора стволов и ветвей пригодна для дубления. Ветви и листья могут использоваться для окрашивания ткани по протраве в различные тона. В Древней Греции -корм для лошадей и овец с целью придания их шерсти лоска и красивого оттенка. Плоды облепихи в пищевой промышленности и в быту применяются в свежем и замороженном виде, а также для получения облепихового масла, чистых и смешанных соков, пюре, желе, варенья, пастил, повидла, мармелада, начинок для конфет, киселей, сиропа, джема, облепихового меда; для витаминизирования и ароматизирования фруктовых и овощных консервов и лекарств; получения пектина и жмыха для животноводства. Пригодны для получения яблочной кислоты и эфирного масла. Могут найти применение при производстве рыбных консервов как заменитель уксуса и лимона. Окрашивают ткани по протраве в различные тона. Поливитаминный корм для животных и птиц, восполняет белковую и витаминную недостаточность и нормализует обмен веществ; положительно влияет на яйценоскость домашней птицы, на привес поросят и ягнят, снижает падеж мелкого рогатого скота, улучшает качество меха у пушных зверей. Облепиха - почвоукрепитель, обогащает почвы связанным азотом на отвальных грунтосмесях. На культурных плантациях на 3-5-й год выращивания с одного дерева получают 3-9 кг плодов, в последующие годы - 16-25 кг (В. Г. Атрохин, Е. Д. Солодухин, Лесная хрестоматия, 1990).
- 140.
Биологические особенности облепихи крушиновидной