Статья по предмету Химия
-
- 41.
Связь автоускорения при радикальной полимеризации метилметакрилата в массе со структурными изменениями полимеризующейся системы
Статьи Химия Уравнение (5) фактически эквивалентно соотношению (2). Представляло интерес сопоставить концентрации полимера в реакционной системе, при которых происходят переходы, фиксируемые реологическим и кинетическим методами, с характеристическими концентрациями, предсказываемыми уравнением (5). Последние были рассчитаны при использовании усредненного значения (Re/M4') =580- 10~и см [22] для ПММА и предположения о плотнейшей гексагональной упаковке эквивалентных Э-сфер (когда А =0,18 [23]). Расчетные значения практически совпадают с концентрациями, соответствующими первому перелому на реологических кривых, и примерно вдвое меньше концентраций, соответствующих минимумам приведенной скорости полимеризации (рис. 4). Соприкосновение невозмущенных клубков при их концентрировании приводит к повышению темпа роста вязкости реакционных систем при увеличении концентрации. Этот эффект, по-видимому, проявляется и в кинетике полимеризации в виде минимума скорости реакции, но при несколько больших концентрациях полимера. В работе [13] было высказано предположение о том, что минимум скорости реакции наблюдается при конверсиях, еще недостаточных для обнаружения отклонения от линейной зависимости вязкости от степени превращения. Проведенный нами эксперимент для системы ММА ПММА доказывает обратное. Дальнейшее увеличение степени превращения должно приводить к взаимному проникновению сжатых до О-размера клубков ПММА, к их перепутыванию с образованием устойчивой и однородной по объему сетки зацеплений. Этот переход фиксируется одновременно как реологически (по дополнительному увеличению темпа нарастания вязкости и обнаружению высокоэластической деформации полимеризующейся системы), так и кинетически (по резкому увеличению скорости полимеризации). На кривых зависимостей светорассеяния от степени превращения в этой области концентраций ранее наблюдали выход на участок линейного уменьшения интенсивности рассеяния [19]. Соответствующие значения характеристических конверсии, полученные различными методами, в логарифмических координатах (рис. 4) ложатся на близко расположенные прямые с тангенсом угла наклона, равным 0,5 (третья группа прямых). Следует отметить, что уравнение (5) позволяет количественно описать характеристические концентрации дЛ0Г и концентрации, соответствующие перелому на реологических зависимостях, как функции степени полимеризации образующегося полимера, если принять, что радиус эквивалентной сферы полимерного клубка ДЭКв=0,665/?в (т. е. параметр А в уравнении (5) равен 0,6). Указанное соотношение между RBKB и Re было получено в теории Кирквуда Райзмана при расчете коэффициента трения макромолекул [24]. Позднее оно было использовано в работах Оноги для расчета характеристических концентраций при исследовании реологических свойств концентрированных растворов полимеров [25] и в работах Тернера для определения конверсии наступления автоускорения [3]. Можно полагать, что изменение кинетической и реологической зависимостей, наблюдаемые при формировании сетки зацеплений, связаны с переходом от обычного к «рептационному» характеру диффузии макромолекул [26, 27]. Действительно, модель, связывающая наступление гель-эффекта с переходом от трехмерной диффузии макромолекул к одномерной («рептация»), позволила оценить константу К в уравнении (1), описывающем наступление автоускорения при радикальной полимеризации ММА. Эта величина оказалась порядка 103 в предположении ?=0,5 [28]. Последующее увеличение степени превращения обусловливает дальнейшее снижение скорости бимолекулярного обрыва за счет увеличения плотности сетки зацеплений и не должно приводить к качественным изменениям характера диффузии реагирующих частиц в реакционной системе вплоть до наступления стеклования, когда и реакция роста цепи переходит в диффузионно-контролируемый режим. Следует отметить, что ни один из переходов на кинетических и реологических кривых не может быть охарактеризован универсальным значением вязкости или свободного объема реакционных систем.
- 41.
Связь автоускорения при радикальной полимеризации метилметакрилата в массе со структурными изменениями полимеризующейся системы
-
- 42.
Синтез и исследование комплексов рения (IV) с некоторыми аминокислотами
Статьи Химия - Керимова У.А., Османов Н.С., Ахмедов М.М., Худавердиев Р.А., Аскерова Т.Я. «Синтез и исследование соединений рения (IV,V) с аминоуксусной кислотой.» //Материалы научной конференции, 2007, с 207
- Керимова У.А., Османов Н.С., Ахмедов М.М., Худавердиев Р.А., Аббасов Я.А. « Синтез и свойства комплексов рения (IV) с аминоуксусной кислотой. » //Химические проблемы № 2, 2008, с.277
- Basak Sucharita, Mondal Amrita, Chopra Deepak, Rajak Kajal Krishna. «Синтез и структурное исследование новых комплексов Re(3+), использующих альдимины альфа-аминокислот как солиганды.» Polyhedron N 13, 2007, т.26, стр.3465-3470.
- Панюшкин В.Т., Буков Н.Н., Болотин С.Н., Волынкин В.А. Координационная химия природных аминокислот. М.: Наука. 2007. 247 с.
- Буков Н.Н., Колоколов Ф.А., Панюшкин В.Т. Комплексные соединения редкоземельных элементов с аспарагиновой кислотой. // Журнал общей химии. 2003. Т. 73. Вып. 10. С. 1619-1621.
- Гагиева С.Ч., Таутиева М.А., Хубулов А.Б. Координационные соединения рения(V) с серосодержащими аминокислотами. XXIII Международная Чугаевская конференция по координационной химии. 4-7 сентября 2007, г. Одесса. Тезисы докладов. Киев: Киевский университет, 2007. С. 561.С. 354
- Таутиева М. А., Гагиева С.Ч., Алиханов В. А. Синтез и исследование строения внутрикомплексных соединений рения (V) с цистеином и метионином. // Известия вузов. Северо-Кавказский регион. Естественные науки. Приложение. 2006. №12. С. 57-59.
- Павлова К.В., Яцимирский К.Б. Кинетика реакций окисления йодида хлоратом калия в присутствий рения. // Журн. неорг. химии. 1965. с.10271032.
- 42.
Синтез и исследование комплексов рения (IV) с некоторыми аминокислотами
-
- 43.
Синтез и свойства полимеров на основе бис-(ацетилфеноксифенил)-о-карборана
Статьи Химия - Коршак В.В., Тепляков М.М., Гелашвили Ц.Л., Калинин В. Н., Захаркин Л.И. //Высокомолек. соед. А. 1980. Т. 22. № 2. С. 262.
- Калинин В.Н., Тепляков М.М., Гелашвили Ц.Л., Савицкий А.М., Дмитриев В.М., Захаркин Л.И. II Докл. АН СССР. 1977. Т. 236. № 2. С. 367.
- Хотина И.А., Калачев А.И., Тепляков М.М., Валецкий П.М., Коршак В.В., Виноградова С.В., Калинин В. И., Захаркин Л.И., Станко В.И., Климова А.И. А. с. 869290 СССР//Б. И. 1982. № 30. С. 296.
- Тепляков М.М., Хотина И.А., Гелашвили Ц.Л., Коршак В.В. //Докл. АН СССР. 1983. Т. 271. № 4. С. 874.
- Тепляков М.М. Успехи химии. 1979. Т. 48. № 2. С. 344..
- Коршак В.В., Тепляков М.М., Сергеев В.А.//Докл. АН СССР. 1973. Т. 208. № 6. С. 1360.
- Коршак В.В., Тепляков М. М., Какауридзе Д.М., Кравченко И.В. // Докл. АН СССР. 1974. Т. 219. № 1. С. 117.
- Bracke W.l/l. Polymer Sci. A-l. 1972. V. 10. № 7. P. 2097.
- Бекасова Н.И. // Успехи химии. 1984. Т. 53. № 1. С. 107.
- Новиков А.Н. //Журн. общ. химии. 1959. Т. 26. № 1. С. 59.
- Scarborough Н.А. // Soc. 1929. № 10. Р. 2361.
- Sonogashira К., Tohda Y., Hagihara N. // Tetrahedron Letters. 1975. № 50. P. 4467.
- Захаркин Л.И., Станко В.И., Братцев В.А., Чаповский Ю.А., Охлобыстин О.Ю. Ц Изв. АН СССР. Сер. хим. 1963. № 12. С. 2238.
- Чеботарев В.П., Тепляков М.М., Коршак В.В. //Изв. АН СССР. Сер. хим. 1974. № 6. С. 1407.
- 43.
Синтез и свойства полимеров на основе бис-(ацетилфеноксифенил)-о-карборана
-
- 44.
Синтез привитых сополимеров поликапроамида с полиметакриловой кислотой
Статьи Химия Следует отметить, что в отличие от обычно используемых ОВС, в которых соотношение окислитель: восстановитель составляет, 1: (10,5), необходимым условием для инициирования прививочной полимеризации без образования гомополимера системой K2S2О8Na2S2О3 как в присутствии, так и в отсутствие ионов меди является значительный избыток восстановителя. Согласно полученным данным (рис. 3), при значениях Na2S2О3: : K2S2О8 ниже 1,7 в реакционной системе параллельно с прививочной полимеризацией протекает и гомополимеризация прививаемого мономера. Количество образующейся при этом ПМАК уменьшается по мере увеличения мольного соотношения восстановитель: окислитель. Оптимальное соотношение, при котором достигается максимальная эффективность прививки и выход привитого сополимера без образования гомополимера составляет 2,5. На основании этих данных можно сделать вывод о том, что первичные радикалы S04~ и ОН, отличающиеся очень высокой абсолютной константой реакции инициирования гомополимеризации МАК [8], быстро гибнут в растворе в результате протекания реакции с S2О32~. Этому способствует высокая концентрация Na2S2О3 в растворе и его значительно** лучшая растворимость в воде по сравнению с K2S2Оs, хорошо сорбируемым на волокне. Образующийся при разложении инициатора тиосульфатный ион-радикал S2Os*_, как известно [9], малоактивен в реакции инициировании, и его дальнейшие превращения приводят к образованию неактивных продуктов [7].
- 44.
Синтез привитых сополимеров поликапроамида с полиметакриловой кислотой
-
- 45.
Структура волокон поли-бис-трифторэтоксифосфазена
Статьи Химия - Виноградова С.В., Тур Д.Р., Миносьянц И.И., Лепендина О.Л., Ларина Н.И., Коршак В.В. // Acta Polymerica. 1982. В.33. № 10. S.598.
- Тур Д.Р., Коршак В.В., Виноградова С.В., Тимофеева Г.И., Гогуадзе Ц.А., Алиханова Н.О., Тарасов А.И., Дубовицкий В.О. // Поликонденсационные процессы-85. София. 1986. С.152.
- Kojima М. Magill I. // Polymer. 1985. V.26. № 13. P. 1971.
- Kojima M., Magill J. H. I/ Makromolek. Chem. 1985. B.186. № 3. S.649.
- Magill J. H., Petermann J., Rieck U. // Colloid and Polymer Sci. 1986. V.264, № 7. P.570.
- Цванкин Д.Я., Папков В. С, Жуков В.П., Годовский Ю.К., Свистунов В. С, Жданов A. A.111. Polymer Sci. Polymer Chem. Ed. 1985. V.23. № 7. P.1043.
- Попов В.П., Антипов Е.М., Купцов С.А., Кузьмин Н.Н., Безрук Л.П., Френкель С.Я. II Acta Polymerica. 1985. В.36. № 3. S.13.
- Wunderlich В., Crebowicz /. // Advances Polymer Sci. 1984. V.60/61. P.2.
- Платэ H.А., Куличихин В.Г., Антипов Е.М., Тур Д.Р. // Makromolek. Chem. 1988. В.189. № 6. S.1447.
- Антипов Е.М., Купцов С.А., Куличихин В.Г., Тур Д.Р., Плато П. A. // Makromolek. Chem. Macromolec. Symp. 1989. V.26. P.69.
- И. Антипов E.M., Куличихин В.Г., Борисенкова Е.К., Тур Д.Р., Платэ Н.А. Высокомолек. соед. А. 1989. Т.31. № И.С.
- 45.
Структура волокон поли-бис-трифторэтоксифосфазена
-
- 46.
Структура полиэтилена в ориентированных бикомпонентных смесях, отожженных выше точки его плавления
Статьи Химия - Попов В.П., Антипов Е.М., Купцов С.А., Кузьмин Н.И., Безрук Л.П., Френкель С.Я. // Acta Polymeries. 1985. V.36. № 3. P.131.
- Купцов С.А., Антипов Е.М., Ремизова А.А., Попов В.П. // Коллоид, журн. 1984. Т.47. № 4. С.791.
- Попов В.П., Купцов С.А., Антипов Е.М., Ремизова А.А. // Высокомолек. соед. Б. 1983. Т.25. № 10. С.723.
- Антипов Е.М., Белоусов С.А., Годовский Ю.К. // Высокомолек. соед.А. 1989. Т.31. № 4. С.845.
- Красникова Н.П., Котова Е.В., Кечекьян А. С, Борисенкова Е.К., Антипов Е.М., Купцов С.А., Пельцбауэр 3., Древаль В.Е. Ц Высокомолек. соед. А. 1988. Т.30. № 6. С.1279.
- Антипов Е.М., Купцов С.А., Попов В.П., Павлов С.А. // Высокомолек. соед. Б., 1987. Т.29. № 6. С.466.
- 7. Попов В.П., Неткач Л.А., Давыдова Л.А., Волошин И.А., Белозеров В.В. // Пласт, массы. 1977. № 9. С.69.
- Antipov Е.М., Kuptsov S. A., Kulichikhin V. G., Tur D.В., Plate N.А. // Makromolek. Chem. 1988. Macromolec. Symp. 1989. V.26. P.69.
- Kojima M., Satake H. J. // Polymer Sci. Polymer Phys. Ed. 1984. V.22. № 2. P.285.
- Broza G., Bieck U., Kawaguchi A., Petermann J. Hi. Polymer Sci. Polymer Phys. Ed. 1985. V.23. № 3 P.2623.
- Gross В., Petermann /. // J. Mater. Sci. 1984. V. 19. № 1. P.105.
- Nishioy Y., Ya mane J., Takahashi T. // J. Macromolec. Sci. Phys. 1984. V.23. № 1. P.17.
- Mencik Z., Plummer H. K., Van Oene H. // J. Polymer Sci. Polymer Phys. Ed. 1972. V.2. № 10. P.507.
- Герасимов В. II. Дис... канд. хим. наук. М.: ИНЭОС АН СССР, 1969.183 с.
- 46.
Структура полиэтилена в ориентированных бикомпонентных смесях, отожженных выше точки его плавления
-
- 47.
Теплоты сорбции акрилонитрила в капроновые
Статьи Химия При сравнении сорбции АН в К- и Кпр-волокна установлено также, что эти процессы характеризуются заметно разными значениями величин та (см. соотношения (2), (3)). Величины ma получали при обсчете сорб-ционных кривых как отрезок, отсекаемый при экстраполяции зависимости m(t)l/t к нулевому моменту сорбции. Как установлено, для К-волокна во всем изученном интервале давлений АН m^Ofil вес.%, т. е. не превышает емкости монослоя, рассчитанной из геометрических размеров волокна (~0,01 вес.%). Для Кпр-волокон выше и значительно меняется с давлением. Зависимость величины та от давления изотерма адсорбции АН на поверхности Кпр-волокна приведена на рис. 3 (кривая 1). При р<20 мм рт. ст. та^0,01 вес.%. Вероятно, удельная поверхность К-волокна при прививке ПАН меняется мало. При повышении давления т„ растет и при р=60 мм рт. ст. становится на порядок больше монослоя. Наблюдаемая форма кривой 1 свидетельствует о возможном протекании полислойной или капиллярной адсорбции АН на поверхности привитых волокон. Теплота адсорбции АН на поверхности привитых волокон, рассчитанная по соотношению Ez=QJm&, при изменении давления от 20 до 70 мм рт. ст. падает от 48 до 32 кДж/моль.
- 47.
Теплоты сорбции акрилонитрила в капроновые
-
- 48.
Технология производства из отходов полиолефинов порошкообразных сорбентов нефти
Статьи Химия Сформулированные нами ранее [2] представления о фазовом равновесии в системах частично-кристаллический полимер-жидкость и анализ под этим углом зрения полученных полных диаграмм состояния таких систем [3] позволили определить область, в которой реализуется неполный фазовый распад с образованием механически непрочного геля полимера. Эта область находится под кривой растворимости жидкости в полимере (рис. 1). Судя по приведенной на этом рисунке диаграмме состояния, максимальная температура стадии освобождения порошка от содержащегося в нем растворителя не должна превышать температуру полной аморфизации полимера (Там) в присутствии жидкости, которая для рассматриваемой системы ПЭНП - толуол составляет ~ 64 °С. Поэтому очевидно, что для выполнения этого условия процесс удаления растворителя должен реализовываться при использовании приемов, понижающих температуру кипения растворителя, к которым относятся, в частности, перегонка при пониженном давлении и в токе водяного пара. Причем из общих соображений ясно, что вода будет выполнять роль хладагента, и ее использование предотвратит слипание порошка и сделает процесс пожаро- и взрывобезопасным.
- 48.
Технология производства из отходов полиолефинов порошкообразных сорбентов нефти