Курсовой проект по предмету Физика
-
- 701.
Эффект Холла
Курсовые работы Физика Простейшая теория Холла эффекта объясняет появление ЭДС Холла взаимодействием носителей тока (электронов проводимости и дырок) с магнитным полем. Под действием электрического поля носители заряда приобретают направленное движение (дрейф), средняя скорость которого (дрейфовая скорость) vдр0. Плотность тока в проводнике j = n*evдр, где n концентрация числа носителей, е их заряд. При наложении магнитного поля на носители действует Лоренца сила: F = e[Hvдp], под действием которой частицы отклоняются в направлении, перпендикулярном vдр и Н. В результате в обеих гранях проводника конечных размеров происходит накопление заряда и возникает электростатическое поле поле Холла. В свою очередь поле Холла действует на заряды и уравновешивает силу Лоренца. В условиях равновесия eEx = еНvдр, Ex =1/ne Hj, отсюда R = 1/ne (cмз/кулон). Знак R совпадает со знаком носителей тока. Для металлов, у которых концентрация носителей (электронов проводимости) близка к плотности атомов (n1022См-3), R~10-3(см3/кулон), у полупроводников концентрация носителей значительно меньше и R~105 (см3/кулон). Коэффициент Холла R может быть выражен через подвижность носителей заряда = е/m* и удельную электропроводность = j/E = еnvлр/Е:
- 701.
Эффект Холла
-
- 702.
Эффект Холла и его применение
Курсовые работы Физика
- 702.
Эффект Холла и его применение
-
- 703.
Ядерно-магнитный томографический каротаж
Курсовые работы Физика На рис.6 представлен интервал песчано глинистого разреза мезозойских отложений Западной Сибири. Песчаники и алевролиты аркозовые, мелкозернистые, плохо отсортированные. Спектры ЯМТК достаточно широкие и располагаются во временном интервале от единиц до сотен мс. Это свидетельствует о значительном диапазоне размеров пор, которые формируются фракциями от мелкоалевритовой до псаммитовой. По аналогии с гранулометрией можно сказать, что сортировка пор ухудшенная. Из картины распределения бинов (колонка 1) видно, что мелкие поры составляют значительную часть емкости пород. Это определяет ухудшенные ФЕС разреза в целом. Коллекторы выделяются увеличенными амплитудами спектров относительно вмещающих пород. Для них характерно смещение правой границы спектров вправо, в область больших времен (сотни мс), что указывает на появление групп пор относительно крупных размеров, формируемых псаммитовой фракцией. Эти поры и контролируют величину эффективной емкости. Однако «качество» эффективных пор невысокое (относительно малые времена Т2) практически все они «приграничные» с неэффективными порами. На формирование профиля проницаемости, помимо содержания и размеров наиболее крупных пор, влияет сортировка пор. Для части коллекторов отмечается смещение вправо левой границы спектров и они становятся более «узкими» за счет уменьшения роли алевритовых пор. Улучшение сортировки пор по размерам свидетельствует об упрощении структуры порового пространства для фильтрации.
- 703.
Ядерно-магнитный томографический каротаж
-
- 704.
Якості лінійного ланцюга
Курсовые работы Физика Можна встановити, що приблизно одна десята частина амплітудного спектра вхідного сигналу укладається в смугу пропущення, а фазочастотна характеристика в цій смузі має гіперболічну залежність, на відміну від прямолінійної фазочастотної характеристики вхідного сигналу. Таким чином, при проходженні через ланцюг вхідний сигнал буде в значній мірі перекручений. На виході ланцюга можна чекати сигнал, значно більше слабкий, чим поданий на вхід, і більше виражений по своїй тривалості. Цей якісний висновок підтверджується точним розрахунком у п.2.
- 704.
Якості лінійного ланцюга
-
- 705.
Ячейка Керра
Курсовые работы Физика где - длина волны света в вакууме; - постоянная Керра, зависящая от природы вещества, длины волны и температуры. Для большинства веществ , что означает их подобие оптически положительным одноосным кристаллам. Для газов К ~ 10-15 СГСЕ. Для жидкостей К ~ 10-12 СГСЕ. Ещё большими значениями постоянных Керра характеризуются растворы жёстких макромолекул и коллоидные растворы. Для наблюдения К. э. монохроматический свет пропускают через поляризатор П (например, призму Николя) и направляют в плоский конденсатор, заполненный изотропным веществом (ячейка Керра). Поляризатор преобразует естественно поляризованный свет в линейно поляризованный. Если к обкладкам конденсатора не приложено напряжение, то поляризация света, проходящего через вещество, не изменяется и свет полностью гасится второй призмой Николя А, повёрнутой на 90° по отношению к первой (анализатором). Если к обкладкам приложено напряжение, то линейно поляризованная световая волна в веществе распадается на две волны, поляризованные вдоль поля Ен (необыкновенная волна) и под прямым углом к полю Е0 (обыкновенная волна), которые распространяются с разными скоростями. Из-за разной скорости распространения фазы колебаний электрического вектора у необыкновенной волны Ен и обыкновенной Е0 волн по выходе из ячейки не совпадают, в результате чего результирующая световая волна оказывается эллиптически поляризованной и частично проходит через анализатор. Если между ячейкой Керра и анализатором А поставить компенсатор К, преобразующий эллиптически поляризованный свет в линейно поляризованный, то поворотом компенсатора можно снова добиться полного гашения света анализатором. Зная угол поворота компенсатора, можно вычислить величину двойного лучепреломления: Dn = nн - no, где nн и no - показатели преломления для необыкновенной и обыкновенной волн.
- 705.
Ячейка Керра