Информация

  • 27741. Магний
    Химия

    Магний один из самых распространенных в земной коре элементов, он занимает VI место после кислорода, кремния, алюминия, железа и кальция. В литосфере (по А.П.Виноградову) содержание магния составляет 2,1%. В природе магний встречается только в виде соединений. Он входит в состав многих минералов: карбонатов, силикатов и др. К числу важнейших из таких минералов относятся, в частности, углекислые карбонатные породы, образующие огромные массивы на суше и даже целые горные хребты магнезит MgCO3 и доломит MgCO3CaCO3. Под слоями различных наносных пород совместно с залежами каменной соли известны колоссальные залежи и другого легкорастворимого магнийсодержащего минерала карналлита MgCl2KCl6H2O (в Соликамске, например, пласты карналлита достигают мощности до 100 м). Кроме того, во многих минералах магний тесно связан с кремнеземом, образуя, например, оливин [(Mg, Fe)2SiO4] и реже встречающийся форстерит (Mg2SiO4). Другие магнийсодержащие минералы это бруцит Mg(OH)2, кизерит MgSO4, эпсонит MgSO47H2O, каинит MgSO4KCl3H2O. На поверхности Земли магний легко образует водные силикаты (тальк, асбест и др.), примером которых может служить серпентин 3MgO2SiO22H2O. Из известных науке 1500 минералов около 200 (более 13%) содержат магний. Однако природные соединения магния широко встречаются и в растворенном виде. Кроме различных минералов и горных пород, 0,13% магния в виде MgCl2 постоянно содержатся в водах океана (его запасы здесь неисчерпаемы около 61016 т) и в соленых озерах и источниках. В растительных и животных организмах магний содержится в количествах порядка сотых долей процента, а в состав хлорофилла входит до 2% Mg. Общее содержание этого элемента в живом веществе Земли оценивается величиной порядка 1011 тонн. При недостатке магния приостанавливается рост и развитие растений. Накапливается он преимущественно в семенах. Введение магниевых соединений в почву заметно повышает урожайность некоторых культурных растений (например, свеклы).

  • 27742. Магний в организме человека
    Медицина, физкультура, здравоохранение

    Магний является необходимой составной частью всех клеток и тканей, участвуя в месте с ионами других элементов в сохранении ионного равновесия жидких сред организма; входит в состав ферментов, связанных с обменом фосфора и углеводов; активирует фосфатазу плазмы и костей и участвует в процессе нервно-мышечной возбудимости. Значение магния, как макроэлемента, в жизнедеятельности проявляется в том, что он является универсальным регулятором биохимических и физиологических процессов в организме. Магний, вступая в обратимые связи со многими органическими веществами, обеспечивает возможность метаболизма около 300 ферментов, в частности креатинкиназы, аденилатциклазы, фосфофруктокиназы, K-Na-АТФазы, Са-АТФазы, ферментов белкового синтеза, гликолиза, трансмембранного транспорта ионов и др. Магний необходим для поддержания структуры рибосом, нуклеиновых кислот и некоторых белков. Он участвует в реакциях окислительного фосфорилирования, синтезе белка, обмене нуклеиновых кислот и липидов, в образовании богатых энергией фосфатов.

  • 27743. Магний при патологии беременности и родов
    Медицина, физкультура, здравоохранение

    Наряду с двумя основными подходами к применению магния в акушерской практике в качестве токолитика и для профилактики эклампсии весьма перспективным является использования магния в качестве нейропротектора. Перинатальное повреждение мозга у плода обычно развивается при остром нарушении маточного или плодового кровообращения. Универсальной реакцией плода на тяжелую гипоксию является активизация симпатоадреналовой системы и централизация кровообращения, а затем (при сохраняющейся асфиксии) падение сердечного выброса и степени мозговой перфузии. В ответ на острую гипоксию в мозге происходят торможение окислительного фосфорилирования и нарушение ионного градиента с массивным поступлением кальция внутрь клетки. Избыток внутриклеточного кальция ведет к повреждению нервных клеток, острому дефициту энергетических запасов клетки и почти полному прекращению биосинтеза белка в мозге [8]. Во время реперфузии возможна вторая волна повреждения нейронов за счет постишемического высвобождения окислительных радикалов, синтеза оксида азота, воспалительной реакции. В числе эффективных мероприятий при ишемии головного мозга применение препаратов магния. Нейропротективный эффект магния был доказан в эксперименте, он связан с подавлением апоптоза нейронов [71]. В ряде клинических исследований отмечена способность МС защищать мозг и у новорожденных [8,52].

  • 27744. Магнит и магнитные поля
    Физика

    Мы привыкли к магниту и относимся к нему чуточку снисходительно как к устаревшему атрибуту школьных уроков физики, порой даже не подозревая, сколько магнитов вокруг нас. В наших квартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах, в банках с гвоздями, наконец. Сами мы тоже магниты: биотоки, текущие в нас, рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на которой мы живём, - гигантский голубой магнит. Солнце жёлтый плазменный шар магнит ещё более грандиозный. Галактик и туманности, едва различимые телескопами, - непостижимые по размерам магниты. Термоядерный синтез, магнитодинамическое генерирование электроэнергии, ускорение заряженных частиц в синхротронах, подъём затонувших судов всё это области, где требуются грандиозные, невиданные раньше по размерам магниты. Проблема создания сильных, сверхсильных, ультрасильных и ещё более сильных магнитных полей стала одной из основных в современной физике и технике.

  • 27745. Магнитная индукция
    Физика

    магнитная составляющая силы Лоренца FM = q[vB]. При указанных направлениях тока в пластинке М и вектора В сила FM направлена вверх (вдоль положительного направления оси OZ). Под действием силы FM частицы должны отклоняться к верхней грани пластинки, так что на верхней грани будет избыток зарядов того же знака, что и q, а на нижней избыток зарядов противоположного знака. В результате этого в пластинке возникнет поперечное электрическое поле, направленное сверху вниз, если заряды q положительны, и снизу вверх, если они отрицательны. Пусть напряженность образовавшегося кулоновского поля будет Е. Сила qЕ, действующая со стороны поперечного электрического поля на заряд q, направлена в сторону, противоположную силе FM . В случае установившегося состояния сила Лоренца (3), действующая на носитель заряда q, равна нулю:

  • 27746. Магнитная обработка промышленных вод
    Геодезия и Геология

    В последнее время в научном сообществе наблюдается возрастание усилий для решения проблемы объяснения MWT эффекта. Так как природная вода представляет собой сложную систему, в которой помимо гидратированных ионов, молекул и газовых пузырьков находятся дисперсные коллоидные частицы органического и неорганического состава, представляется вероятным, что объяснение может быть основано на изменениях в ионном распределении диффузионных слоев. Влияние MWT на электрокинетический -потенциал суспензии CaCO3 был измерен уже в [9]. В данном случае по мнению авторов уменьшение -потенциала было связано с ускоренной коагуляцией. Позже Хагашитани с соавторами (Higashitani et al.) провели серию хорошо контролируемых экспериментов по изучению магнитных эффектов в статических (неподвижных) водных растворах [10 - 13]. В работе [10] было обнаружено, что высокая скорость коагуляции немагнитных коллоидных частиц зависит от плотности магнитного потока и эффект влияния магнитного поля в большей мере проявлялся для частиц меньшего размера. Уменьшение -потенциала можно было обнаружить по меньшей мере в течение 6 дней [11]. В статье [12] авторы использовали микроскоп, функционирующий на основе метода AFM, чтобы получить информацию о влиянии магнитного поля на молекулярном уровне. Толщина адсорбированного слоя на поверхности водных растворов изменялась после воздействия магнитного поля, она зависела от концентрации электролита и демонстрировала эффект памяти по меньшей мере в течение одного дня. В работе [13] в 1999 году та же самая группа провела AFM измерения для импульсных и переменных магнитных полей и сравнила полученные результаты с данными для статического поля. Было обнаружено, что результат влияния зависел от частоты импульсов магнитного поля и что время, требуемое для достижения максимального эффекта, было намного меньше для импульсных и переменных полей чем для статического поля. Несомненно, что представленные выше AFM результаты представляют важное экспериментальное подтверждение явлений, ответственных за противонакипный эффект MWT.

  • 27747. Магнитное поле
    Физика

    Источниками магнитного поля являются движущиесяэлектрические заряды (токи). Магнитное поле возникает в пространстве, окружающем проводники с током, подобно тому, как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле. Магнитное поле постоянных магнитов также создается электрическими микротоками, циркулирующими внутри молекул вещества (гипотеза Ампера).

  • 27748. Магнитно-ядерный резонанс при исследовании спинного мозга
    Медицина, физкультура, здравоохранение

    Хондросаркомы встречаются еще реже, чем остеосаркомы. Обычно выявление у пациентов пожилого возраста. Представляют собой опухоль, состоящую из фиброхрящевидной ткани с диффузным распределением кальцинатов или полей новообразованной кости. Мезенхимальная хондросаркома является гистологической разновидностью хондросаркомы. Радиологические проявления характеризуются большой схожестью у всех типов сарком, демонстрируя литические поражения со всеми свойствами, типичными для злокачественного процесса, - деструкцией кортикальной кости, инвазией окружающих мягкотканных образований и неоднородными границами, поражением одного или нескольких позвонков. Остеосаркома может проявляться остеобластическим ростом, но более типичен для нее смешанный характер - литический и бластический, с поражением как тела позвонка, так дужек и остистого отростка. В большинстве случаев в хондросаркоме выявляется диффузное отложение солей кальция на фоне костной деструкции. Может обнаруживаться склеротический ободок. ' МР томография отражает изменения костной структуры пораженных тел позвонков и окружающих тканей. Литические изменения кости проявляются снижением сигнала на взвешенных томограммах, и повышением - на Т2-взвешенных томограммах, остеосклероз - гипоинтенсивным сигналом и на Т1-, и на Т2-взвешенных томограммах . Наличие деструкции кортикальной кости можно обнаружить по потере типично низкого сигнала во всех режимах сканирования. ТМО очень устойчива к инфильтративному росту опухоли и обычно выявляется в виде полосы низкого сигнала, разделяющей опухоль и содержимое позвоночного канала. Визуализация последней лучше осуществляется на Т2-взвешенных изображениях. Инфильтрация эпидуральной клетчатки демонстрируется на Т1 -взвешенных МРТ. Опухолевая ткань имеет более гипоинтенсивный сигнал по сравнению с жировой клетчаткой эпидурального пространства.

  • 27749. Магнитные и электрические свойства сплавов Co1-xNixTe, подвергнутых термобарическому воздействию
    Физика

    Микроскопический механизм твердофазной реакции замещения анионов в кристаллической решётке AIIIBV на элемент CVI сводится к термостимулированному образованию вакансий в анионных узлах с сохранением их координационного окружения катионами и их последующему заполнению атомами CVI из адсорбированного слоя. На поверхности AIIIBV могут находиться как различные молекулы, так и атомы халькогена. Встреча молекулы C2VI с вакансией аниона BV в подложке, по-видимому, стимулирует диссоциацию C2VI CVI + CVI или C3VI C2VI + CVI с образованием атомов CVI и последующее образование элемента структуры A2IIIC3VI. Если концентрация атомизированного халькогена достаточно велика, процесс заполнения сгенерированных вакансий можно считать мгновенным. Тогда кинетика роста концентрации элементов структуры A2IIIC3VI определяется только темпом генерации вакансий элемента BV подложки. Несмотря на то, что периоды идентичности и кристаллические структуры A2IIIC3VI и A3IIIB3V близки, имеющееся рассогласование периодов идентичности решёток вызывает механические напряжения, стимулирующие процесс генерации вакансий. В мостиках CVI - AIII - BV связи CVI - AIII более прочные, чем связи AIII - BV. Поэтому после формирования уединённого элемента структуры A2IIIC3VI темп генерации вакансий элемента BV максимален в его ближайшем окружении с радиусом порядка радиуса релаксации механических напряжений (r0). Тогда кинетику роста концентрации A2IIIC3VI можно описать уравнением

  • 27750. Магнитные измерения
    Физика

    Ílneînd? ír drçíîîádrçcl çrär÷, dlrrleuo n dîeîuüt eraícníuo cçeldlícé, îddlälë?tnn? îáu÷íî ânlaî ílneîëüeî îníîâíuo eraícníuo âlëc÷cí: eraícníué dînîe Ô, eraícnír? cíäóeöc? Â, írdd?clííînnü eraícníîaî dîë? H, íreraíc÷lííînnü E, eraícníué eîelín n c äd. Ddc÷le âî eíîaco ndînîáro cçeldlíc? eraícníuo âlëc÷cí ôrenc÷lnec cçeld?lnn? íl eraícnír?, r ýëlendc÷lner? âlëc÷cír, â eînîdót eraícnír? âlëc÷cír ddlîádrçólnn? â ddîölnnl cçeldlíc?. Cínldlnótur? írn eraícnír? âlëc÷cír îddlälë?lnn? drn÷lníue dónle ír îníîârícc cçâlnníuo çrâcnceînnlé elcäó eraícníuec c ýëlendc÷lnecec âlëc÷círec. Nlîdlnc÷lneîé îníîâîé dîäîáíuo elnîäîâ ?âë?lnn? ânîdîl ódrâílícl Erenâlëër, nâ?çuârtull eraícníîl dîël n dîële ýëlendc÷lnece; ýnc dîë? ?âë?tnn? äâóe? ddî?âëlíc?ec înîáîaî âcär ernldcc, celíóleîaî ýëlendîeraícníue dîële.

  • 27751. Магнитные материалы
    Физика

    Большие значения н и макс пермаллоя объясняются небольшими величинами магнитной апизотропии и магнитострикции. Это облегчает поворот магнитных моментов из направления легкого намагничивания в направлении поля и не вызывает механических напряжений, которые затрудняют смещение доменных границ под воздействием слабого поля. Магнитная проницаемость пермаллоев сильно снижается с увеличением частоты(из-за влияния вихревых токов) и напряженности подмагничивающего (постоянного) поля. Для увеличения удельного сопротивления, улучшения магнитных характеристик и их стабильности в диапазоне напряженностей магнитного поля и температур, повышения механической прочности и обрабатываемости в пермаллой добавляют легирующие элементы - молибден, хром, кремний, марганец, медь.

  • 27752. Магнитные материалы для микроэлектроники
    Физика

    Монокристаллы ортоферритов получают обычными способами (см. § 2.20). Одним из наиболее перспективных считают выращивание монокристаллов из расплава с применением бестигельной зонной плавки и радиационного нагрева. Этот метод включает изготовление исходных для выращивания монокристаллов поликристаллических заготовок в виде цилиндрических стержней методами керамической технологии. Процесс кристаллизации осуществляется следующим образом. Из предварительно полученного любым методом монокристалла вырезают вдоль определенного кристаллографического направления затравку, которую закрепляют на керамическом или сапфировом держателе. По оси затравки с высокой точностью устанавливают исходный поликристаллический стержень. Камера герметизируется, продувается и подключается к системе давления кислорода. Затравку и питающий стержень приводят во вращение, сближают до минимального расстояния и нагревают по определенному режиму. В месте сближения затравки и стержня образуется расплавленная зона. При медленном (510 мм/ч) перемещении стержней относительно зоны па затравке начинается кристаллизация. После окончания процесса выращивания кристалл подвергают отжигу для уменьшения He извлекают из кристаллизационной камеры и отрезают от затравки. Таким образом можно получить монокристаллы в виде цилиндров диаметром до 8 мм и длиной до 80 мм.

  • 27753. Магнитные наносистемы
    Физика

    Для синтеза нанокластеров и наноструктур применялись как традиционные методы химии твердого тела и твердотельные химические реакции, так и специальные методы матричного наноструктурирования с образованием кластеров в микропорах с помощью химических реакций. Методы второй группы позволяют переходить от изолированных (матричная изоляция) к взаимодействующим кластерам. В круг вопросов изучения нанокластеров и наносистем входили атомная нанокластерная динамика, магнитные свойства и магнитные фазовые переходы, каталитические свойства. При этом использовались теоретические методы: термодинамический подход к описанию магнитных фазовых переходов в наносистемах, учитывающий поверхностную энергию кластеров и межкластерные взаимодействия, и математическая модель нуклеации, в ходе твердотельной реакции учитывающая термодинамические аспекты зародышеобразования и роста кластеров. Методическую базу экспериментальных исследований составляли метод рэлеевского рассеяния мессбауэровского излучения для характеристики динамических свойств наносистем, методы мессбауэровской спектроскопии для определения размера кластера, методы мессбауэровской спектроскопии для исследования магнитных фазовых переходов и определения критических размеров кластеров, при которых происходит скачкообразное изменение магнитных свойств кластера, метод зонда для исследования ограниченной диффузии кластера в поре, позволяющий оценить потенциалы движения кластера, методы каталитического тестирования (на основе определения активности и селективности катализатора) свойств поверхности и объема нанометрических слоистых оксидов допированных ионами переходных металлов. В качестве объектов синтеза и исследования были выбраны нанокластеры и наносистемы на основе оксидов железа, а также полимерные нанокластерные системы, которые интересны не только в плане изучения и моделирования новых свойств, связанных с размерными эффектами и межкластерными взаимодействиями, но, что крайне важно, перспективны для создания новых магнитных материалов и катализаторов[2].

  • 27754. Магнитные поля Галактики
    Авиация, Астрономия, Космонавтика

    Так, если в газе образовалось уплотнение, то электроны (имеющие одинаковую энергию с ионами, и поэтому примерно в 40 раз большую скорость) будут «рассасываться» быстрее, чем ионы. Такое движение электронов относительно ионов (электрический ток!) и приводит к возникновению слабых магнитных . полей. Если при этом температура вещества окажется неоднородной, то возникшие электрические токи приобретают вихревой характер, что препятствует затуханию процесса. Далее в результате движения газовых масс происходит запутывание силовых линий,, их уплотнение и в конечном итоге усиление поля. По-видимому, этим путем могут возникать поля напряженностью до 10-8 эрстед. Предполагалось, что в дальнейшем в результате вращения Галактики конденсации межзвездного газа, пронизанные магнитными полями, вытягиваются, образуя спиральные ветви. Оостановимся на современных взглядах на образование спиральных ветвей галактик как волн плотности. Это вынуждает по-иному рассматривать и проблему происхождения магнитного поля Галактики. Недавно Н. С. Кардашев высказал предположение, что магнитное поле Галактики имеет внегалактическое происхождение. Другими словами, слабое поле могло существовать уже в самом веществе, из которого сформировалась Галактика. В процессе эволюции нашей звездной системы оно усиливалось и закручивалось ее вращение.

  • 27755. Магнитные свойства археологических объектов
    История

    Что касается вмещающих пород, то они повсеместно представлены в различной комбинации почвами, суглинками, лессовидными суглинками, гумусированными глинами и т.п. Их магнитные свойства слабо дифференцированы и различие можно было бы установить лишь при массовом отборе образцов каждой разновидности. Из множества литературных источников по этому вопросу следует отметить работу А.Н.Третяка и З.Е.Волок [Третяк А.Н., Волок З.Е., 1976], где непосредственно по рассматриваемому региону отмечается закономерное убывание величин намагничения и магнитной восприимчивости от глинистых красноцветных разновидностей до зеленых и серых глин и песков. Однако, по тем же данным, средние значения, например, магнитной восприимчивости этих разновидностей пород убывают, соответственно, от 25Ч10-6 до 17Ч10-6 ед.СГС. Таким образом, хотя дифференциация магнитных свойств вмещающих пород и имеет место, но различия их магнитных характеристик, как и следовало ожидать, ничтожно малы, особенно по сравнению с характеристиками искомых археологических объектов. Кроме того следует принять во внимание, что перед магнитометрическими исследованиями археологических объектов задача разделения вмещающих пород на отдельные петрографические разности не ставится. Учитывая все это, без ущерба для последующих выводов можно рассматривать имеющиеся данные о магнитных свойствах вмещающих пород, как одну общую статистическую совокупность, в которой наиболее магнитные разности найдут отражение в одной крайней области распределения их магнитных характеристик, слабо магнитные - в другой. Если при этом распределение сохранится близким к нормальному, достоверность выводов на данном этапе исследований не пострадает. Результаты дальнейшей статистической обработки (см. разд. 3) полностью подтверждают правомерность включения данных по всем разностям вмещающих пород в одну выборку. При этом вариационная кривая (см. рис. 2, 4) имеет одну вершину (т.е. выборка однородна) и сохраняется симметричной, что говорит о соответствии распределения нормальному закону.

  • 27756. Магнитные съемки различных масштабов
    География

    Солнечно-суточные вариации S представляют собой периодические изменения всех элементов земного магнетизма с периодом, равным продолжительности солнечных суток, и протекают по местному времени. Причиной солнечно-суточных вариаций являются вихревые, ионосферные токи. Области их циркуляции занимают фиксированное положение в пространстве и при суточном вращении Земли последовательно оказываются над разными меридианами. Различают два вида солнечно-суточных вариаций: вариации в спокойные дни Sq и вариации в бурные дни Sd называемые также солнечно суточными возмущенными вариациями. Встречающееся в литературе по магниторазведке понятие «суточный ход» обычно служит синонимом одновременно двух понятий: как самих Sq-вариаций (процесса), так и их амплитуд (числа), что необходимо иметь в виду при подготовке отчетов и публикаций. Амплитуды спокойных солнечно суточных вариаций Sq максимальны летом и минимальны зимой. В месяцы равноденствия амплитуды одинаковы в обоих полушариях и принимают промежуточное (среднее) значение. Sq-вариации отсчитываются от ночного уровня поля. Амплитуды Sq в горизонтальной компоненте в среднем составляют десятки гамм (до 5060), вертикальной до 1520 гамм, склонения до 10'. В экваториальной зоне Sq-вариации в H- и Z-компонентах резко усиливаются, а вариации склонения затухают. Зависимость Sq-вариаций от широты места носит сложный характер и рассматривается в специальных монографиях и научных публикациях. Sq-вариации считаются примерно одинаковыми для точек на одной и той же параллели, если расстояние между этими точками не превосходит 150200 км. Строго говоря, ни географическая, ни геомагнитная системы координат не соответствуют симметрии поля Sq-вариаций.

  • 27757. Магнитный заряд и электрический момент
    Математика и статистика

    По мнению авторитетных справочных изданий магнитных зарядов не существует, но хотелось бы практически доказать, что они есть. Вот итог магнитного взгляда на окружающий мир современной физикой. Это утверждение об отсутствии магнитных зарядов лишает физику устойчивого положения. На понятии только одного электрического заряда, заложенного в современную электродинамику, физику можно представить как инвалида на одной ноге. Магнитный момент электрона, введенный в квантовой механике, является как бы спасательным кругом в океане электричества и полей. Выведенный в квантовой механике магнитный момент, как близкое по величине значение магнетону Бора, не используется в электродинамике. Эта ситуация как бы подтверждает разрыв электродинамики Максвелла с квантовой механикой Бора. Попытки расчета магнитного момента заряженных частиц средствами электродинамики не делались, что образовало большую пропасть между двумя направлениями в физике.

  • 27758. Магнитометры
    Разное

    Сверхпроводники первого рода при помещении их в магнитное поле «выталкивают» последнее так, что индукция внутри сверхпроводника равна нулю (эффект Мейсснера). Напряжонность магнитного поля, при котором разрушается сверхпроводимость и поле проникает внутрь проводника, называется критическим магнитным полем Нк. У сверхпроводников второго рода существует промежуток напряженности магнитного поля Нк2 > Н > Нк1, где индукция внутри сверхпроводника меньше индукции проводника в нормальном состоянии. Нк1 нижнее критическое поле, Нк2 верхнее критическое поле. Н < Нк1 индукция в сверхпроводнике второго рода равна нулю, Н > Нк2 сверхпроводимость нарушается. Через идеальные сверхпроводники второго рода можно пропускать ток силой: (критический ток). Объясняется это тем, что поле, создаваемое током, превысит Нк1, вихревые нити, зарождающиеся на поверхности образца, под действием сил Лоренца, двигаются внутрь образца с выделением тепла, что приводит к потере сверхпроводимости.

  • 27759. Магнитопроводы
    Физика

    При изготовлении разрезных ленточных магнитопроводов разрезание является одной из ответственных операций. Отклонение режимов этой операции от оптимальных может привести к появлению короткозамкнутых витков и наклепу, в результате возрастут потери на вихревые токи. Разрезание магнитопроводов осуществляют различными способами, например, фрезерованием, абразивным кругом, электроискровой обработкой и т. д. При фрезеровании поверхность разреза получается неровной, а витки магнитопровода оказываются короткозамкнутыми. Кроме того, имеет место наклеп и изменение ориентации зерен в месте разреза. Разрезание магнитопроводов абразивным кругом (шероховатость обработанной поверхности Rа 1,25 мкм) и электроискровой обработкой (Rz 20 мкм) дают лучшие результаты. После разрезания абразивным кругом отпадает необходимость применения последующего шлифования. Электроискровая обработка позволяет избежать механического воздействия на магнитопровод и замыкание отдельных его витков. Поверхностный слой, в котором в результате теплового воздействия происходит изменение ориентации зерен до глубины 0,050,08, мм, удаляется при последующем шлифовании торцов магнитопровода.

  • 27760. Магнитотвердые материалы
    Физика

    яженности постоянного магнитного поля от 0 до +Н, от +Н до Н и снова от Н до +Н кривая изменения индукции (кривая перемагничивания) имеет форму замкнутой кривой петли гистерезиса. Для слабых полей петля имеет вид эллипса (рис 1.1). При увеличении значения напряженности магнитного поля Н получают серию заключенных одна в другую петель гистерезиса. Когда все векторы намагниченности доменов сориентируются вдоль направления поля, процесс намагничивания закончится состоянием технического насыщения намагниченности материала. Петлю гистерезиса, полученную при условии насыщения намагничивания, называют предельной петлей гистерезиса. Она характеризуется максимально достигнутым значением индукции Bs, называется индукцией насыщения. При уменьшении напряженности магнитного поля от +Н до 0 магнитная индукция сохраняет остаточную индукцию Вс. Чтобы получить остаточную магнитную индукцию, равную 0, необходимо приложить противоположно направленное размагничивающее поле определенной напряженности -Нс. Отрицательная напряженность магнитного поля -Нс называется коэрцитивной силой материала. При достижении напряженности магнитного поля значения Н, а затем 0 вновь возникает остаточная индукция Вс. Если повысить напряженность магнитного поля до +Нс, то остаточная магнитная индукция Вс будет равна 0.