Радиоэлектроника

  • 441. Проект медницко-радиаторного участка АТП на 3500 а/м ГАЗ-3307
    Реферат пополнение в коллекции 15.08.2010
  • 442. Проект ОАО "Челны холод" с разработкой агрегатного участка и стенда по обкатке коробок передач для легковых и грузовых автомобилей грузоподъемностью менее 3,5т.
    Дипломная работа пополнение в коллекции 06.10.2010
  • 443. Проект ОАО "Челны холод" с разработкой моторного участка и стенда по обкатке двигателей КамАЗ, МАЗ, ЯМЗ
    Дипломная работа пополнение в коллекции 15.08.2010
  • 444. Проект реконструкции зоны текущего ремонта ОАО «ПАК» с детальной разработкой универсального канавного подъемника для замены коробки передач и редуктора автобуса
    Дипломная работа пополнение в коллекции 17.07.2010
  • 445. Проект реконструкции ОАО «Набережночелнинское ГАТП» с разработкой участка по диагностике, окраске и стенда проверки тормозов автобусов
    Дипломная работа пополнение в коллекции 10.07.2010
  • 446. Проект реконструкции станционных сооружений ГТС
    Информация пополнение в коллекции 12.01.2009

    Третье поколение систем коммутации - квазиэлектронные и электронные телефонные станции. Квазиэлектронные станции устранили ряд недостатков присущих АТС ДШ и АТС КУ и используются во многих странах мира. Создание же полностью электронных систем стало возможным лишь после применения в них принципа коммутации информации в цифровом виде (импульсно кодовая модуляция). Цель создания нового поколения коммутационной техники на основе цифровых систем передачи (ЦСП) заключается в повышении гибкости и экономичности системы, сокращение затрат и трудоемкости эксплуатации, упрощение и удешевление в производстве, а так же предоставление новых видов услуг абонентам.

  • 447. Проект узла коммутации телеграфных связей в областном центре
    Дипломная работа пополнение в коллекции 09.12.2008

    На городских линиях связи телеграфная каналообразующая аппаратура устанавливается в местах скопления абонентов или на АТС. Предположим в одном микрорайоне имеется 13 абонентских установок и 1 отделение связи . В этом случае общее число каналов будет равно 14 . Включаем эти каналы в модуль ТММ аппаратуры ТВР . Телеграфный мульдекс с модемом ТММ обеспечивает организацию 45 стартстопных 50-бодных каналов или меньшее количество каналов других типов и с другими скоростями . На другой стороне ТЧ канала в узле связи тоже устанавливается блок ТММ аппаратуры ТВР . Один канал включается в ЭТК - КС , другие каналы подключаются к линейно - канальному оборудованию ЭСК 2.4. Линии от других городских отделений связи и абонентских установок организуются по аналогичному принципу. Если абонентские установки и городские отделения связи находятся вблизи от телеграфного узла , то они могут включаться в телеграфную станцию без аппаратуры уплотнения. Абонентские установки в сети РОСПАК не включаются в каналообразующую аппаратуру , а идут прямо на магистральное направление . Так как по исходным данным в проектируемом узле предусматриваем 55 абонентских установок РОСПАК , то для передачи информации требуется 1 ТЧ - канала . На первом магистральном направлении 108 каналов , поэтому берем 2 блока ТММ аппаратуры ТВР. На втором направлении имеется 54 канала , поэтому берем 2 модуля ТММ , каждый из которых может организовать 45 50-бодных каналов . На третьем и четвертом магистральных направлениях соответственно имеется 90 и 108 каналов. Поэтому на каждом из этих направлений мы берем два и три модуля ТММ аппаратуры ТВР . Выборка каналообразующей телеграфной аппаратуры на магистральном направлении приводится в таблице 4.

  • 448. Проект цеха столярно- строительных изделий
    Дипломная работа пополнение в коллекции 30.07.2010
  • 449. Проект цеха сушки пиломатериалов
    Реферат пополнение в коллекции 10.08.2010
  • 450. Проект шиномонтажного участка разборо-сборочного цеха РМЗ по капитальному ремонту экскаваторов
    Реферат пополнение в коллекции 20.07.2010
  • 451. Проектирование автотранспортного предприятия
    Реферат пополнение в коллекции 10.07.2010
  • 452. Проектирование активных RC-фильтров
    Реферат пополнение в коллекции 09.12.2008

    Активные RC-фильтры относятся к широко распространенному классу частотно избирательных цепей и , наряду с построенными на основе их использования генераторами синусоидальных колебаний , находят применение в системах передачи информации , автоматического управления и регулирования , технике измерения и различного рода функциональных преобразователях . Активные RC-фильтры (АФ) содержат пассивные избирательные RC-цепи и активные устройства (усилители , гираторы , конверторы отрицательного сопротивления) , при помощи которых получают требуемую добротность звеньев второго порядка .

  • 453. Проектирование АЛУ для сложения двоично-десятичных чисел
    Реферат пополнение в коллекции 09.12.2008

    В момент включения устройства (рис приложение 1) либо нажатии клавиши «Сброс», происходит сброс всех регистров, при этом триггер Т2 (микросхема DD12) находится в нулевом состоянии. Двоичный код введённого числа с клавиатуры поступает на вход регистра RG1 (микросхема DD1). Одновременно сигнал с входа регистра поступает через логический элемент ИЛИ на вход ключа, (элемента И). Так как триггер Т2 находится в нулевом состоянии, то полученный сигнал поступает на разрешающие входы регистра RG1, после чего данные передаются на выход регистра. Регистр RG2 (микросхема DD1) подключён последовательно регистру RG1. Код с выхода RG1 подаётся на вход RG2, который в свою очередь находится в закрытом состоянии. Открытия регистра RG2 происходит в момент следующего нажатия клавиши. В этом случае данные из регистра RG1 перегружаются в регистр RG2 в старший разряд десятичного числа, а вновь введённое число помещается на место предыдущего в младший. После нажатия клавиши «+»или « - », триггер Т2 переключается в единичное состояние. В этом случае регистр RG1 закрыт, а ввод осуществляется аналогичным образом в регистры RG3 и RG4 (микросхема DD2). Необходимо обратить внимание на то, что при нажатии клавиши « - » происходит переключение триггера Т4 (микросхема DD12) в единичное состояние, после чего данные на выходе регистров RG3 и RG4 преобразуются в дополнительный код. Далее, коды поступают на входы сумматоров SM1, SM2 (микросхемы DD3, DD4). Одновременно информация с выходов регистров RG1- RG4 поступает на компараторы = =1-= =3 (микросхемы DD7, DD8, DD9). Где происходит сравнение чисел и формирования знака « - » в случае отрицательного результата. После суммирования чисел производится коррекция полученного результата, т.е. в случае появления запрещенных комбинаций происходит сложение переполненных разрядов с числом 6. Данная коррекция выполняется на сумматорах SM3, SM4 (микросхемы DD5, DD6). Отображение вводимых чисел, а также результата вычисления выполняется с помощью дешифраторов DC1 и DC2 (микросхемы DD10, DD11). Вначале, когда триггер Т2 находится в нулевом состоянии происходит отображение первого вводимого числа. Так, как параллельно управлению регистрами RG1и RG2, триггер Т2 производит управление дешифраторами. Управление осуществляется путем подачи инвертированного нулевого сигнала с триггера Т2 на управляющий вход дешифратора. В этот момент, код, имеющийся на выходах регистров RG1и RG2, помещается в дешифратор, где происходит его преобразование с последующей передачей на индикаторы HL1, HL2. Как только нажата клавиша «+» или «-», происходит блокировка данных с регистров первого числа, из-за того, что триггер Т2 становится в единичное состояние. Дешифратор готовится к отображению второго вводимого числа. Индикация второго числа осуществляется аналогично первому. Вывод результата на индикаторы происходит после нажатия клавиши «=». В этом случае блокируются, выходы регистров RG3 и RG4 и на вход дешифраторов поступает выходной сигнал с сумматоров SM3 и SM4. Вывод третий цифры на индикаторе, в случае переполнения второго двоично-десятичного разряда производится с выхода переноса в следующий разряд сумматоров SM3 и SM4. В этом случае сигнал с выходов Cn+1 предаются на соответствующие ячейки третьего индикатора HL3.

  • 454. Проектирование бесконтактного магнитного реле
    Информация пополнение в коллекции 12.01.2009

    БМР имеет этажерочную конструкцию. Сердечники с обмотками устанавливаются на стальное шасси . Между БМР и шасси, а также между БМР и трансформатором предусмотрены карболитовые детали и . Сердечники БМР и трансформатора ( и ) помещаются в текстолитовые каркасы и , поверх которых наматываются обмотки, соответственно рабочие и сетевая. В БМР поверх рабочих обмоток на оба сердечника наматываются обмотки постоянного тока . Поверх сетевой обмотки трансформатора наматываются рабочая и обмотка смещения . Трансформатор и БМР крепятся на шасси при помощи латунного болта . Также на шасси устанавливается разъем . К внутренней стороне стальной лицевой панели ( ) крепится печатная плата ( ) с элементами: подстроечными резисторами и соответственно цепей обратной связи и смещения, а также постоянными ограничительными резисторами и соответственно цепей обратной связи и смещения . также на плате припаивается конденсатор фильтр цепи смещения , диодная сборка , и диоды рабочей цепи и . На внешней стороне лицевой панели расположена ручка . На лицевой панели предусмотрены отверстия для отвертки, необходимые для настройки БМР.

  • 455. Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков
    Дипломная работа пополнение в коллекции 07.05.2010
  • 456. Проектирование защитного заземления электроустановок
    Реферат пополнение в коллекции 09.12.2008

    Конструктивные решения:

    1. присоединение корпусов электромашин, трансформаторов, аппаратов, светильников и т.п., металлических корпусов передвижных и переносных ЭУ и ЗУ при помощи заземляющего проводника сечением не менее 10 мм2.
    2. расположение ЗУ, как правило, в непосредственной близости от ЭУ. Оно должно из естественных и искусственных заземлителей. При этом в качестве естественных заземлителей следует использовать проложенные в земле водопроводные и другие металлические трубопроводы (за исключением трубопроводов горючих жидкостей, горючих или взрывчатых газов и смесей), обсадные трубы скважин, металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, и другие элементы. Для искусственных заземлителей следует применять только стальные заземлители.
  • 457. ПРОЕКТИРОВАНИЕ И КОНСТРУИРОВАНИЕ СВЧ ИНТЕГРАЛЬНЫХ УСТРОЙСТВ
    Информация пополнение в коллекции 12.01.2009

    Система автоматизирует решение следующих задач: технологический анализ чертежа с определением возможности обработки данной детали в условиях функционирования ГПС конкретной конфигурации; выбор рациональных видов и способов получения заготовки; компоновку ТП по этапам, выделение множества элементов, обрабатываемых на каждом этапе, и сравнение вариантов принципиальных схем ТП по экономическим критериям; выбор оборудования для выполнения каждого этапа; выбор маршрута обработки детали внутри этапа ТП; выбор системы оборудования и закрепления заготовки и модели оборудования на каждой операции; проектирование вариантов общего маршрута ТП с объединением операций по общности обрабатываемых элементов и поверхностей вращения, принятых в качестве баз; проведение размерного анализа для элементов поверхности вращения с учетом принятых в качестве баз или с учетом принятых в качестве баз плоскостей и требований взаимного расположения; назначение и анализ определенных линейных размеров с минимизацией состава технологических размерных цепей, замыкающими звеньями которых служат конструкторские размеры и припуски; определение излишеств, допусков и отклонений операционных линейных размеров посредством технологического размерного анализа, который в ходе проектирования маршрута изготовления детали обеспечивает назначение операционных размеров и оценку возможности их реализации на настроенном оборудовании автоматически; формирование инструментальных наладок и составление расчетно-технологических карт для операции, на которых применяются станки с ЧПУ; расчет режимов обработки и норм времени по операциям ТП; расчет себестоимости изготовления детали по вариантам и выбор из них варианта, имеющего минимальную себестоимость при заданной производительности; проектирование и выпуск управляющих программ для станков с ЧПУ с использованием САПР, например типа «Техран»; расчет накладок управляющих кулачков для токарно-револьверных автоматов с использованием систем RAKTA, RASKUL; печать технологической документации (маршрутных и операционных карт).

  • 458. Проектирование канала сбора аналоговых данных микропроцессорной системы
    Информация пополнение в коллекции 12.01.2009
  • 459. Проектирование командно-измерительной радиолинии системы управления летательным аппаратом
    Информация пополнение в коллекции 09.12.2008

    Определение необходимых полос пропускания фильтров в приемном тракте

    • Полосовой ограничитель должен пропускать сигнал КИМ-ФМн. В спектре сигнала UД(t) после синхронного детектора сигнал расположен вблизи частоты 47,06кГц и занимает полосу примерно (4…5)/ТПС=1кГц. При нестабильности частоты 10-5 от номинала частотный сдвиг не превысит 500Гц. Следовательно, полосовой ограничитель должен быть настроен на частоту 47,06кГц и иметь полосу пропускания около 1кГц.
    • ФНЧ канала синхронизации выделяет синхросигнал. Считая, что полоса занимаемых частот соответствует примерно 12FТ, находим необходимую полосу фильтра в 142кГц.
    • Высокочастотный преобразователь приемного тракта должен пропустить достаточное число полезных компонент сигнала, т.е. иметь полосу не менее 12FТ, к этому надо добавить нестабильность несущей (10кГц). Следовательно, полоса должна быть порядка 2(142+10)кГц= =300кГц. Эта же величина определяет занимаемый радиолинией диапазон частот.
  • 460. Проектирование лог. ключа в n-МОП базисе с квазилинейной нагрузкой (МСХТ)
    Информация пополнение в коллекции 09.12.2008