Компьютеры, программирование

  • 10661. Цифровая радиорелейная система передачи прямой видимости
    Дипломная работа пополнение в коллекции 16.02.2012

    5.Кроме распределения частот между стволами каждой РРС, необходимо всем РРС выделить свой частотный план (двухчастотный или четырехчастотный). При этом необходимо помнить, что двухчастотный план, когда на каждую РРС выделяется только две частоты (прием и передача), более экономичен по частотным ресурсам, но требует специальной защиты антенн от приема сигналов с обратного направления. При этом частотном плане обычно используются рупорно - параболические, высококачественные, осесимметричные антенны (РПА) и другие антенны, имеющие защитное действие (-60…-70) дБ. Четырехчастотный план (на каждую РРС выделяется четыре частоты, две - на передачу в обоих направлениях, две - на прием) позволяет упростить антенны (нет потребности защиты от помех обратного направления), но в данной полосе частот уменьшается количество частот для организации дуплексных радиостволов. Такой план частот обычно используется при применении перископических антенных систем (ПАС) в ДЧ 2 ГГц.Рекогносцировка на местности потребовала незначительных перемещений РРС на местности для более удобного их положения.Магнитные азимуты, определенные по карте, уточнялись на местности. Они для направления ОРС1 до ОРС18 соответствуют следующим значениям:

  • 10662. Цифровая система коммутации для мини-АТС
    Дипломная работа пополнение в коллекции 20.10.2011

    Поражение электрическим током может быть при прикосновениях:

    • к токоведущим частям, находящимся под напряжением;
    • к отключенным токоведущим частям, на которых остался заряд или появилось напряжение в результате ошибочного включения.
    • Кроме того, может быть поражение напряжением шага при нахождении человека в зоне замыкания тока на землю.
    • Для предупреждения поражения электротоком необходимо предусмотреть:1. Заземление всех металлических частей оборудования (металлических корпусов, электроинструмента), которые могут оказаться под напряжением, согласно требованиям ГОСТ 2.751-73, ГОСТ 12.2.007.0-75, ГОСТ 21130-75.
    • 2. Укрытие всех питающих кабелей и соединительных проводов, исключающее повреждение изоляции.
    • 3. Выполнение "Правил технической эксплуатации электроустановок", а также требований ГОСТ 12.2.003-74, ГОСТ 12.2.007.0-75, ГОСТ 12.2.007.7-83, ГОСТ 216.57-83, ГОСТ 21130-75.
    • Для предупреждения воздействия статического электричества необходимо предусмотреть:
    • 1. Использование рабочей одежды из антистатического материала.
    • 2. Отвод зарядов путем заземления оборудования.
    • Защитой от напряжения, появившегося на металлических корпусах приборов в результате нарушения изоляции, служит защитное заземление.
    • Защитное заземление представляет собой преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Защитное заземление уменьшает напряжение на корпусе относительно земли до безопасного значения, следовательно, уменьшается и ток, протекающий через тело человека.
    • Заземляющее устройство состоит из искусственных заземлителей: стальных труб (уголков) и контурной шины, расположенных непосредственно в земле, при помощи которых осуществляется надежное соединение с землей и создается малое сопротивление растеканию тока.
    • Различают контурное и выносное заземляющие устройства.
    • Контурное заземляющее устройство - размещение электродов по контуру (периметру) площадки на которой находится заземляемое оборудование, а также внутри этой площадки. Часто электроды размещаются по площадке равномерно, поэтому контурное заземляющее устройство называют также распределенным.
    • Выносное заземляющее устройство характеризуется тем, что заземлитель вынесен за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточен на некоторой части этой площадки. Поэтому выносное заземляющее устройство называют также сосредоточенным.
    • Достоинством выносного заземляющего устройства является выбор места размещения электродов заземлителя с наименьшим сопротивлением грунта (сырое, глинистое). Выносное заземление применяется при малых токах замыкания на землю и в установках до 1000 В.
    • Таким образом выносное заземление является оптимальным с точки зрения размещения его в здании (помещение, в котором размещается мини-АТС, может находиться на верхних этажах и не иметь соприкосновения с землей).
    • На всех этапах монтажа, настройки и при проведении регламентных работ рабочее место человека должно удовлетворять следующим требованиям:
    • - помещение должно иметь естественное и искусственное освещение, процент освещенности 1.2% на место;
    • площадь не менее 6 м2; объем не менее 24м2.
    • Освещенность в зоне рабочего стола 300 - 500 люкс. Для освещения рекомендуется применять люминесцентные лампы. В местных источниках света применяются лампы накаливания с расстоянием от глаз до экрана 600-700 мм.
    • Кроме того:
    • рабочее место должно быть оборудовано подставкой для ног;
    • допустимый уровень шума по ГОСТ 12.1.003-83 не должен превышать 50 дБ.
    • Температура окружающей среды и относительная влажность воздуха поддерживаются в соответствии с нормами ГОСТ 12.1.005-76. Колебания температуры на рабочем участке допускаются в пределах ±2°С, относительной влажности ±10%. В холодный период года температура в помещении должна быть 20-23°С, относительная влажность - 40-60%. В теплый период года температура - 21-24°С, относительная влажность - 40-60%. Движение потока воздуха должно быть минимальным при скорости потока не менее 0,5 м/с.
    • Помимо этого необходимо выполнять режим труда и отдыха, в частности, при 8-ми часовой рабочей смене перерывы продолжительностью 15 мин следует устанавливать через 2 часа от начала рабочей смены, через 2 часа после обеденного перерыва.
    • В процессе монтажа, настройки и эксплуатации мини-АТС существует опасность возникновения пожара. Причины пожара могут быть электрического и неэлектрического характера. К причинам электрического характера относятся:
    • искрение в электрических устройствах;
    • значительные электрические перегрузки проводов и обмоток электрических приборов;
    • токи коротких замыканий, нагревающие проводники до высокой температуры, при которой может возникнуть воспламенение их изоляции. 3. Плохие контакты в местах соединения проводов, когда вследствие большого переходного сопротивления выделяется большое количество тепла;
    • электрическая дуга, возникающая в результате ошибочных операций.
    • Причинами пожаров неэлектрического характера могут быть:
    • неисправность отопительных приборов и нарушение режимов их работы;
    • курение в пожароопасных помещениях;
    • самовоспламенение некоторых материалов.
  • 10663. Цифровая система передачи информации с импульсно-кодовой модуляцией
    Дипломная работа пополнение в коллекции 10.05.2011

    Расчет шума квантования. В цифровых системах связи определяющим является шум квантования. Шум квантования обусловлен конечностью числа уровней отсчетов и, как следствие, неточностью представления мгновенного уровня сигнала. Разность между исходным и квантованным сигналом называется шумом квантования. Конечность числа уровней квантования определяет максимальную амплитуду входного сигнала. Превышение максимальной амплитуды входного сигнала приводит к ограничению уровня квантованного сигнала (перегрузка дискретизатора). При равномерном шаге квантования шум квантования не зависит от уровня сигнала, поэтому для получения приемлемого соотношения сигнал/шум при малом уровне сигнала необходимо уменьшать шаг, что ведет либо к увеличению числа уровней, либо к ограничению максимальной амплитуды сигнала. При заданном равномерном законе распределения сообщения a(t), все его значения, попадающие в интервал между двумя соседними уровнями квантования, равновероятны и не зависят от номера уровня (т.к. шаг квантования равномерный). Поэтому и шум квантования e(t), вычисляемый в каждый момент времени как отклонение значения исходного сообщения от ближайшего к нему уровню квантования, распределен равномерно в интервале ().

  • 10664. Цифровая система передачи сообщений
    Дипломная работа пополнение в коллекции 08.01.2012

    Основной элемент модулятора и демодулятора - перемножитель, используется вместе с преобразователем "напряжение-ток", включаемым на его эмиттерном входе. В модуляторе для суммирования выходных сигналов соответствующие коллекторные выводы двух перемножителей соединяются. При подаче на входы перемножителя сигнала с его выхода снимается сумма двух колебаний - с суммарной и разностной частотами. Нужное колебание выделяется путем фильтрации. Первая составляющая выделяется в повышающих преобразователях частоты, а вторая - в понижающих преобразователях. Основной режим квадратурных модулятора и демодулятора - модуляция/демодуляция сигнала с синфазной I(tn) и квадратурной Q(tn) модулирующими посылками и модуляция/демодуляция цифрового сигнала. Уровни содержат информацию о цифровом коде модулирующего сигнала. На выходе модулятора

  • 10665. Цифровая электроника и её основные характеристики
    Дипломная работа пополнение в коллекции 26.09.2011

    Ко второму классу вентилей - энергопотребителей относятся вентили, которые для питания используют ионизирующее излучение. Широко известны логические вентили, питающиеся от света искусственных источников. Существуют также логические схемы работоспособные от солнечного света. Они отнесены ко второму классу. К данному классу относятся также и вентили, способные использовать энергию других источников энергии. В качестве таких источников используется фоновое радиоизлучение, сейсмическая энергия вибрации стен зданий, перепады атмосферного давления и другие. Вентили данного класса принципиально отличаются от вентилей предыдущего класса наличием встроенных преобразователей энергии. Известны также логические вентили, способные функционировать как от искусственных традиционных источников, так и от естественных источников энергии. Например, такие вентили могут питаться энергией солнечного света, а в его отсутствие - от традиционного аккумулятора. Вентили данного третьего класса принципиально отличаются от двух предыдущих наличием специальных средств, обеспечивающих изменения режима электропитания. Традиционные источники питания для передачи энергии требуют, по крайней мере, двух шин: собственно шин питания и общей шины. Шины подключаются к каждому вентилю цифрового устройства и занимают значительную часть площади кристалла. Это обстоятельство во многом определяет топологию интегральной схемы и затрудняет внутрисхемные соединения. Большая длина шин и большая площадь шин также отрицательно сказываются на надежности устройств и плотности их упаковки. Энергетическое снабжение с использованием традиционных источников является типичным централизованным с присущими ему недостатками. Любой одиночный дефект, приводящий к короткому замыканию шин питания, приводит к катастрофическому отказу устройства в целом. Протекание токов по шинам питания обуславливает термолизацию части поставляемой источником энергии. Неизбежные потери энергии при транспорте от источника к вентилю делает принципиально невозможным создание полностью адиабатических схем, то есть, схем совершенно не диссипирующих энергию.

  • 10666. Цифрове діаграммоутворення
    Курсовой проект пополнение в коллекции 16.02.2010

     

    1. The Path to 4G Mobile. - Communications Week International, Issue 260, 5 March 2001.
    2. Слюсар В. Ультразвуковая техника на пороге третьего тысячелетия.- ЭЛЕКТРОНИКА: НТВ, 1999, № 5, с. 50-53.
    3. Слюсар В. Цифровое формирование луча в системах связи: будущее рождается сегодня. - ЭЛЕКТРОНИКА: НТВ, 2001, № 1, с. 6-12.
    4. Слюсар В. Цифровые антенные решетки: будущее радиолокации. - ЭЛЕКТРОНИКА: НТБ, 2001, № 3, с. 42-46.
    5. Слюсар В. Схемотехника цифрового диаграммообразования. Модульные решения. - ЭЛЕКТРОНИКА: НТБ, 2002, № 1, с. 46-52.
    6. Слюсар В.І. Ультразвуковая техника на пороге третьего тысячелетия.// Электроника: НТБ. - 1999. - №1. - С. 50-53.
    7. Tsunami II - final report. 98-0798, Leatherhead, August 1998, ISBN 0-7008-0682-2, 71 pp - http://www.era.co.uk/techserv/pubs/p980798.html
    8. Марпл C.Л. Цифровой спектральный анализ и его приложения/ Пер. с англ. - М.: Мир, 1990. - 584 с.
    9. Сверхбольшие интегральные схемы и современная обработка сигналов: Пер. с англ./ Под ред. С. Гуна, Х. Уайтхауса, Т. Кайлата. - М.: Радио и связь, 1989. - 472 с.
    10. Варюхин В. А. Основы теории многоканального анализа. - К.: ВА ПВО СВ, 1993. - 171 с.
    11. Дрогалин В.В., Меркулов В.И., Родзивилов В.А., Федоров И.Б., Чернов М.В. Алгоритмы оценивания угловых координат источников излучений, основанные на методах спектрального анализа// Зарубежная радиоэлектроника. -№2. - 1998. - С. 3-17.
    12. Джонсон Д.Х. Применение методов спектрального оценивания к задачам определения угловых координат источников излучения// ТИИЭР. -1982. - Т. 70. №9. - С. 126-139.
    13. Кейпон, Гринфилд, Комер. Обработка данных большой сейсмической группы способом многомерного максимального правдоподобия// ТИИЭР. - 1967. - т.55. - №2. - С. 66.
    14. Кейпон Дж. Пространственно-временной спектральный анализ с высоким разрешением// ТИИЭР. - 1969. -т.57. - №8. - С. 69-79.
    15. Слюсар І.І. Особливості кутової пеленгації в оглядово-прицільних РЛС з цифровим діаграмоутворенням при компенсації взаємного впливу каналів// Артиллерийское и стрелковое вооружение: Международный научн.-техн. сб. - К.: НТЦ АСВ, 2003. - №. 7. - С. 19 - 24.
    16. Слюсар І.І. Врахування взаємного впливу каналів в системах звязку з адаптивними антенними решітками// Вісник ЖІТІ. - Житомир: ЖІТІ.-2001. - Вип. № 18. С. 72-75.
    17. Svantesson T. Direction Finding in the Presence of Mutual Coupling. - http://db.s2.chalmers.se/download/theses/lic_307.pdf.
    18. Fistas N., Manikas A. A new General Global Array Calibration Method. - http://skynet.ee.ic.ac.uk/papers/.
    19. Svantesson T. Direction Finding in the Presence of Mutual Coupling. - http://db.s2.chalmers.se/download/theses/lic_307.pdf.
    20. Лобкова Л.М., Проценко М.Б., Посный О.А. Взаимные сопротивления излучения круглых рамок в малоэлементных антенных решетках// Радиоэлектроника. - 1999. - Т. 42. - № 2. - С. 27-32. (Изв. высш. учеб. заведений).
    21. Millar J. Equations from “Yagi Antenna Design” by Jim Lawson. - http://mathcad.adeptscience.co.uk/mcadlib/apps/lawson.mcd.
    22. Драбкин А.Л., Зузенко В.Л., Кислов А.Г., Антенно-фидерные устройства. Издание 2 переработанное и дополненное. - М.: “Советское радио”, 1974. - С. 93-97.
    23. Винокуров А., Макеев Ю. Станции тропосферной связи// - К.: Зброя та полювання. -№ 11(16). - 2000. - С. 23.
    24. Слюсар В. И. Идеология построения мультистандартных базовых станций перспективных систем связи// Радиоэлектроника. (Изв. высш. учеб. завед.). - 2001. - № 4. - С. 3-12.
    25. Слюсар В.И. Быстродействующие АЦП: достижения и перспективы// Радиоэлектроника (Изв. высш. учебн. завед.). - 2000. - №3. - С. 42-46.
    26. Гольцова М. Быстродействующие широкоплосные ЦАП// Электроника: Наука, Технология, Бизнес. - 2001. -№ 2. - С. 24-28.
    27. Слюсарь И.И. Раздел 4. Кн.2 Прил. отчета по НИР// Итоговый отчет по НИР “Альфа”. - Киев: ОАО “Укрспецтехника”. - 2002. - С. 28-46.
    28. Слюсар В.И., Слюсарь И.И. Совместное оценивание нескольких параметров сигналов в системах связи с цифровым диаграммобразованием//Сб. научных трудов по материалам 7-го Международного молодежного форума “Радиоэлектроника и молодежь в ХХІ веке”. - Харьков: ХНУРЭ. -2003. - С. 128.
    29. Слюсар В.И. Торцевые произведения матриц в радиолокационных приложениях// Радиоэлектроника (Изв. высш. учебн. завед.). - 1998. - №3. - С. 71-75.
    30. Бард Й. Нелинейное оценивание параметров. - М.: “Статистика”, 1979. - 349 с.
    31. http:// www.ittc.ukans.edu/RDRN/Overwork.html.
    32. Патент України № 52454 A, МПК7 G 01S 13/00 A. Спосіб формування характеристики спрямованості активної цифрової антенної решітки з врахуванням взаємного впливу каналів// І.І. Слюсар, В.І. Слюсар - № 2002054340; Заявлено 27.05.02; Опубл. 16.12.02, Бюл. № 12.
    33. Слюсар І.І., Уткін Ю.В., Дубик А.М., Масесов М.О. Реалізація перспективних телекомунікаційних технологій та методів цифрової обробки сигналів на вітчизняній елементній базі.// Інформаційні інфраструктура і технології. - Полтава: ПВІЗ, 2007. - № 2. - С. 32-36.
    34. Слюсар В.И. Військовий звязок країн НАТО: проблеми сучасних технологій.// Електроніка: Наука, Технологія, Бізнес. - 20
    35. Слюсар І.І., Уткін Ю.В., Дубик А.М., Масесов М.О. Реалізація перспективних телекомунікаційних технологій та методів цифрової обробки сигналів на вітчизняній елементній базі// Інформаційні інфраструктура і технології. - Полтава: ПВІЗ, 2007. - №2. - С.32-36.
    36. Слюсар В.И. SMART-антенны. Цифровые антенные решетки (ЦАР). MIMOсистемы на базе ЦАР// В книзі "Широкополосные беспроводные сети передачи информации". Вишневский В.М., Ляхов А.И., Портной С.Л., Шахнович И.В. - М.: Техносфера. - 2005. - С. 507-569.
  • 10667. Цифровий вологомір
    Курсовой проект пополнение в коллекции 21.01.2011

    Абсолютну вологість газів вимірюють також електрометричними підігрівними датчиками, які являють собою чехол із склотканини, яка оброблена водним розчином хлористого літію (LiCl), та надітий на чутливий елемент термоперетворювача. Поверху чохла намотані дві проволочки до яких подається невелика напруга змінного струму. Внаслідок протікання струму через провідний шар розчину LiCl останній нагрівається і гігроскопічний шар висихає. При цьому протікання струму зупиняється і шар охолоджується до тих пір, поки знову не стане поглинати вологу із аналізованого газу. В проміжку між висиханням гігроскопічного шару і поглинанням води встановлюється рівновагова температура, яка залежить тільки від абсолютної вологості газу. В якості термоперетворювача може використовуватися терморезистор, включений в схему автоматичного зрівноважувального моста.

  • 10668. Цифровий синтез частоти
    Контрольная работа пополнение в коллекции 17.11.2010

    Це здатний зробити простий двійковий лічильник. Тому простий DDS виглядає так: двійковий лічильник формує адресу для ПЗП, куди записана таблиця одного періоду функції sin, відліки з виходу ПЗП поступають на ЦАП, який формує на виході синусоїдальний сигнал, що піддається фільтрації у ФНЧ і поступає на вихід (рисунок 4). Для зміни вихідної частоти використовується дільник із змінним коефіцієнтом розподілу, на вхід якого поступає тактовий сигнал з опорного генератора.

  • 10669. Цифровий термометр
    Курсовой проект пополнение в коллекции 02.02.2011

    Îï³ð òåðìîìåòð³â â ïðîìèñëîâèõ óìîâàõ âèì³ðþºòüñÿ ìîñòàìè àáî ëîãîìåòðàìè. Íåçð³âíîâàæåí³ ìîñòè âèêîðèñòîâóþòü ð³äêî ³ç-çà òàêèõ íåäîë³ê³â, ÿê íåë³í³éíî¿ ãðàäóþâàëüíî¿ õàðàêòåðèñòèêè, çàëåæíîñò³ ¿õ ïîêàçàíü â³ä çíà÷åííÿ íàïðóãè æèâëåííÿ. Íàéá³ëüøå ïîøèðåííÿ îäåðæàëè çð³âíîâàæåí³ ìîñòè, â ïëå÷³ ÿêèõ âìèêàþòü òåðìîìåòðè îïîðó (ðèñóíîê 1.1).

  • 10670. Цифровое моделирование рельефа
    Курсовой проект пополнение в коллекции 18.04.2012

    Построенные в разных контурах поверхности, конечно, могут выглядеть по-разному. Но взаимосвязь контуров проявляется при определении системой параметров точек их пересечения и при использовании операций удаления, изменения и т.д. контуров. Это формат представления поверхности в виде матрицы равномерно распределенных точек, каждая из которых характеризуется своей высотой. В зависимости от способа вычисления высот поверхности в пространстве между точками различают "решеточную" и "ячеистую" модели. В первой из них такие значения интерполируются по значениям высот в нескольких соседних точках, вторая же модель рассматривает эти точки как центры ячеек с постоянным z значением. Использование "решеточной" регулярной сети имеет смысл в случае представления такой сетью рельефа, самой поверхности. В этом случае используемая интерполяция гарантирует непрерывность ее представления. В случае же, если в качестве z значений используются категорийные данные (например, степень озеленения данной местности и т.п.), которые необязательно должны быть непрерывными, разумнее использовать "ячеистую".[1].

  • 10671. Цифровое моделирование системы управления электроприводом в пространстве исходных фазовых координат
    Дипломная работа пополнение в коллекции 20.10.2011

    АлгоритмОсобенности технической реализацииДостоинстваНедостатки1. В пространстве главной (регулируемой данным регулятором) и вспомогательных фазовых координатНе представляет затрудненийПростота технической реализацииНе придает системе преимуществ в статических характеристиках. Повышенная по сравнению с другими алгоритмами чувствительность к параметрическим возмущениям2. В пространстве главной фазовой координаты и первых производных главной и вспомогательных фазовых координатЗатруднительна из-за необходимости вычисления первых производных каждой из фазовых координатВозможность получения жестких статических характеристик, меньшая по сравнению с алгоритмом 1 чувствительность к параметрическим возмущениямНевозможность полной компенсации всех параметрических и координатных возмущений. Повышенная чувствительность к помехам из-за наличия производной3. В пространстве главной координаты и ее производных, причем порядок наивысшей производной на единицу меньше числа измеряемых фазовых координатВесьма затруднительна, т.к. требует вычисления n-1 производных фазовых координатТеоретически абсолютная инвариантность к параметрическим и координатным возмущениямПрактическая невозможность технической реализации без дополнительных упрощений алгоритма, например, переходе от чистых производных к реальным.

  • 10672. Цифровое телевидение
    Информация пополнение в коллекции 02.11.2011

    Кодирование звука осуществляется отдельным звуковым кодером. По мере развития формата MPEG-1, звуковые кодеры неоднократно переделывались, становясь все эффективнее. К моменту окончательной стандартизации формата MPEG-1 было создано три звуковых кодера этого семейства: Layer I, Layer II (иногда называют Musicam по названию стандарта, послужившего прообразом) и Layer III. Принципы кодирования основаны на том, что для человеческого уха в несжатом звуке (CD-audio) передается много избыточной информации. Принцип сжатия работает на "эффектах маскировки" некоторых звуков (например, если идет сильный звук на частоте 1000 Гц, то более слабый звук на частоте 1100 Гц человек уже не слышит, чувствительность слуха падает примерно на 100 мс после окончания сильного звука). Психоакустическая модель (Psycoacustic), используемая в MPEG-1, разбивает весь частотный спектр на части, в которых уровень звука считается одинаковым, а затем удаляет звуки, не воспринимаемые человеком из-за эффектов маскировки.

  • 10673. Цифровой автомат, его исследование и проектирование
    Курсовой проект пополнение в коллекции 21.06.2012

    Для обслуживания цифровой техники, тем более, для ее ремонта и разработки, требуются специалисты, досконально знающие принципы работы цифровых устройств и систем, базовые элементы цифровой электроники, типовые схемы их включения, правила взаимодействия цифровых узлов, способы построения наиболее типичных цифровых устройств. При этом в процессе подготовки таких специалистов необходимо учитывать следующие специфические особенности. Во-первых, цифровая техника не слишком сильно связана с аналоговой техникой и с физическими эффектами, используемыми в электронике. Отсюда следует, что специалист по цифровой схемотехнике совсем не обязательно должен быть классным специалистом по аналоговой технике и по физическим основам электроники. Строго говоря, такому специалисту не очень важно, на каких электронных компонентах и на каких физических принципах построена проектируемая система и ее элементы. Гораздо важнее логика ее работы и протоколы взаимодействия цифровых элементов, узлов и устройств, входящих в систему. Во-вторых, стать настоящим специалистом по разработке цифровых устройств и систем невозможно без овладения азбукой цифровой электроники. То есть разработчик обязан понимать логику работы таких базовых компонентов цифровой схемотехники, как логические элементы, буферы, триггеры, регистры, дешифраторы, мультиплексоры, счетчики, сумматоры, оперативная и постоянная память и т.д. Кроме того, он должен знать типовые схемы включения этих компонентов и правила их корректной работы. Даже если разрабатывается устройство на базе микросхем с программируемой логикой или на базе микроконтроллеров, такие знания совершенно необходимы.

  • 10674. Цифровой блок управления электроприводом
    Дипломная работа пополнение в коллекции 27.02.2012

    Формирователь импульсов строится на основе регенеративного компаратора. Статическая характеристика имеет гистерезис, который позволяет исключить влияние помехи, вызванной вибрацией кромки щели, и темнового тока на выходной сигнал ФИД. Статическая характеристика с отмеченными порогами переключения показана на рисунке 4. Назначение элементов схемы следующее: Делитель R3-R4 задает опорное напряжение (нижний порог переключения) UОП»UH, резисторы R5-R6 задают верхний порог переключения UB, а диод VD3 вместе с резистором R6 создают положительную ОС, сигнал которой суммируется с опорным напряжением, что и дает гистерезис. Диод VD4 нужен для исключения отрицательного напряжения на выходе компаратора. Стабилитрон VD5 служит для стабилизации напряжения логической единицы (2.4-5В), резистор R7 задает ток стабилитрона, а резистор R8 служит для согласования входного сопротивления для ТТЛ.

  • 10675. Цифровой диктофон
    Реферат пополнение в коллекции 30.05.2010
  • 10676. Цифровой диктофон
    Курсовой проект пополнение в коллекции 22.04.2012

    . Блок задающего генератора и предусилителя (ЗГ) формирует выходной сигнал высокой частоты для раскачки усилителя мощности. Состоит из задающего генератора, выполненного на микросхеме PQV037Z, обеспечивающей возбуждение сигнала на частоте от 395МГц до 420МГц в зависимости от состояния выхода (CTL). Если на вывод «CTL» подать напряжение +6 вольт, то диапазон частот DD4 будет от 410.8МГц до 430 МГц, если подать 0 вольт, то диапазон частот DD4 будет от 396МГц до 398.4МГц в зависимости от напряжения питания. Так как выходная микросхема усилителя мощности имеет диапазон частот от 350МГц до 400МГц, то вывод (2) «CTL» подключаем к земле. Напряжение питания +6 вольт подаем на вывод (1) «Vcc». Выходная мощность микросхемы 1мкВт. Далее сигнал усиливается двумя микросхемами PQVIPC2746TE и PQVIPC2763TE до 5мВт, первая из которых является буфером, а вторая усилителем. Оконечный каскад предусилителя ВЧ выполнен на транзисторе 2SC3356, включенном по схеме с общим эмиттером. Питается предусилитель от выхода (2) генератора шума (ЦМ). Такая схема питания блока обеспечивает специальный вид модуляции, заложенный в принципе работы ПД, назовем её «Шумовая импульсная модуляция». Выходная мощность задающего генератора и предусилителя 30-50мВт. ЗГ выполнен на отдельной плате и помещен в экран.

  • 10677. Цифровой дозиметр
    Курсовой проект пополнение в коллекции 26.06.2010

    Если продолжать увеличивать напряжение на счетчике, то после области ограниченной пропорциональности, которая не используется в детекторах, следует область Гейгера. Кинетическая энергия электронов становится столь большой, что, ударяясь об анод, они выбивают из него фотоны, которые, попадая на катод, вырывают электроны, которые ионизируют молекулы газа, - каждый вторичный электрон вызывает вспышку самостоятельного разряда. Один актпервично и ионизации в области Гейгера может вызвать такой же импульс, как и 1000 первичных актов. Если в пропорциональных счетчиках импульс на выходе пропорционален энергии частицы, то в счетчиках Гейгера-Мюллера числовое значение выходного импульса совершенно не зависит от начальной ионизации. Поэтому, если с помощью пропорционального счетчика можно определять как число ионизирующих частиц, так и их вид и энергию, то счетчик Гейгера-Мюллера можно использовать только для подсчета числа пролетевших частиц. Для гашения самостоятельного разряда в счетчиках Гейгера-Мюллера используется конденсатор и высокоомное сопротивление. С помощью внешнего контура напряжение на счетчике снижается ниже. порога зажигания. Для емкости около 10 пФ сопротивление должно быть больше или порядка 108 Ом, тогда время разрядки емкости более 10-3 с. Для многих измерений такие временные характеристики недостаточны. В настоящее время счетчики Гейгера-Мюллера вытесняются самогасящимися счетчиками. Было обнаружено, что небольшие добавки паров этилового спирта в счетчике Гейгера-Мюллера, наполненном аргоном, приводят к гашению самостоятельного разряда. Этот эффект и используется в самогасящихся счетчиках. Их, кроме одноатомного газа (аргона, неона и др.), наполняют небольшой добавкой паров одного из многоатомных органических соединений (этилового спирта, этилена. и т.п.) Молекулы примесей нейтрализуют ионы основного газа и активно поглощают кванты электромагнитного излучения, обуславливая автоматическое гашение разряда.

  • 10678. Цифровой измеритель времени
    Курсовой проект пополнение в коллекции 02.07.2010

    Для выбора компонентов устройства, необходимо знать критерии их выбора. По условию задания, необходимо в качестве «ядра» устройства использовать микропроцессор 8086. Для данной системы это оптимальный вариант: при малой цене он обладает достаточной производительностью (многое ещё зависит от состава микропроцессорной системы и качества программы «зашитой» в ПЗУ). В данной схеме можно обойтись без применения дополнительных контроллеров ввода/вывода, так как в этом нет необходимости - микропроцессор сам может формировать сигнал обращения к памяти или портам ввода/вывода, а также сигналы чтения /записи, тем более что нет необходимости обрабатывать прерывания от внешних устройств.

  • 10679. Цифровой измеритель разности двух напряжений
    Курсовой проект пополнение в коллекции 29.09.2010

    При проектировании цифрового устройства, для последующего имплементации в PLD, появляется ряд дополнительных трудностей, связанных с невозможностью использования некоторых типов данных и языковых конструкций. Так же приходится учитывать особенности имплементации для ПМЛ разных фирм и устанавливаемые ограничения: максимальная частота, количество доступных элементов и т.д. Наиболее эффективным способом в этом случае является построение структурных моделей с использованием библиотек компонентов поставляемых производителем конкретного типа ПМЛ. Однако в данной расчетно-графической работе этого не было сделано, так как основной целью было - приобретение навыков построение моделей отдельных узлов и структурных моделей. В целом при построении моделей цифровых узлов не использовались запрещенные языковые конструкции и типы данных, также были учтены ограничения на количество доступных элементов памяти и максимальную частоту сигнала.

  • 10680. Цифровой милливольтметр
    Дипломная работа пополнение в коллекции 05.01.2012

    Для того чтобы загорелась определенная цифра на индикаторе, на общий катод нужно подать низкое напряжение, а на аноды - высокое. Для ограничения тока светодиодов в индикаторе, необходимо рассчитать токоограничительные сопротивления. Рабочий ток элемента индикатора (стр. 2 приложение индикатор) равен 25мА, напряжение, питающее индикаторы на АЦП MAX130 (стр. 2 приложение индикатор) равно 5В, следовательно, сопротивление токоограничительных резисторов равно 5В/25мА=200Ом. Для управления индикатором будет использоваться дешифратор SN74LVC1G139-5V [5], который обладает следующими преимуществами: