Экология

  • 921. Использование генетически модифицированных организмов в Украине
    Информация пополнение в коллекции 28.11.2009

     

    1. Стратегія економічного і соціального розвитку України (2004-2015 роки) "Шляхи європейської інтеграції". - К., ІВЦ Держкомстату України, 2004, с. 63-64, 67, 68.
    2. Портер М. Стратегія конкуренції.- К., "Основи", 1998, с. 168-173.
    3. Розпорядження Кабінету Міністрів України від 17 жовтня 2007 р. "Про схвалення Концепції національної екологічної політики України на період до 2020 року".
    4. Веклич О.О. Оцінка перспектив конкурентоспроможності економіки України в контексті нормативних екологічних вимог Світової організації торгівлі. У зо. Світогосподарські пріоритети України.- К. Об'єднаний інститут економіки НАН України, 2005, с. 52-59.
    5. Програма діяльності Кабінету Міністрів України "Український прорив: для людей, а не політиків" от 16 января 2008 г.
    6. Піддубна Л.І. Конкурентоспроможність економічних систем: теорія, механізм, регулювання та управління.- Харків, ВД "ІНЖЕК", 2007, 368 с.
    7. Гордон Я. Целевая конкуренция. М., "Вершина", 2006, с. 34.
    8. Сливотски А. Миграция ценности. Что будет с вашим бизнесом послезавтра? М., "Манн, Иванов и Фербер", 2006, с. 84-112
    9. Сорочинский Б.В. Экономические риски от выпуска и использования генетически модифицированных растений. "Физиология и биохимия культурных растений" № 1, т. 40, 2008.
    10. Закон Украины "Об основах национальной безопасности Украины" от 19 июня 2003 г.
    11. Ангурец А. В. Классификация рисков при использовании ГМО. "Физиология трансгенных растений и проблемы биобезопасности". 29.11-03.12.2004. Тезисы докладов.- М., 2004.
    12. Вeckie H.L.,Hall L. М., Warwick S. I. Impact of herbicide-resistant crops as weeds in Canada. Proceedings Brighton Crop Protection Concil - Weeds, 2001, p. 135-142; В e rg -stain I. L., В e rgs t ai n J.L.,Miller et. el. Immune responses in farm wolkers after exposure to Bacillus thuringiensis pesticides. Environ. Health Perspect. V. 107,1999, p. 575-582.
    13. Сердобинекий Л.А., Лаврова Н.В., Кукушкина Л.Н. Применение генной инженерии в сельском хозяйстве. Сб. докладов "Биотехнологические процессы переработки сельскохозяйственного сырья".- М., РАСХН, 2002
    14. Кузнецов В.В. Возможные биологические риски при использовании генетически модифицированных сельскохозяйственных культур. "Вестник ДВО РАН" № 3, 2005, с. 40-54.
    15. Пуштаи А., Бардоч С. Ивен С. Генетически модифицированные продукты питания: потенциальное воздействие на здоровье человека. (Пер. с англ.). CAB International 2003. - М., МСоЭС, 2004.
  • 922. Использование городских сточных вод для технического водоснабжения
    Курсовой проект пополнение в коллекции 25.12.2009

    В практике используется также понятие городские сточные воды, которые представляют собой смесь бытовых и производственных сточных вод. Бытовые, производственные и атмосферные сточные воды отводятся как совместно, так и раздельно. Наиболее широкое распространение получили общесплавные и раздельные системы водоотведения. При общесплавной системе все три категории сточных вод отводятся по одной общей сети труб и каналов за пределы городской территории на очистные сооружения. Раздельные системы состоят из нескольких сетей труб и каналов: по одной из них отводятся дождевые и незагрязненные производственные сточные воды, а по другой или по нескольким сетям - бытовые и загрязненные производственные сточные воды. Сточные воды представляют собой сложные гетерогенные смеси, содержащие примеси органического и минерального происхождения, которые находятся в нерастворенном, коллоидном и растворенном состоянии. Степень загрязнения сточных вод оценивается концентрацией, т.е. массой примесей в единицу объема мг/л или г/куб.м. Состав сточных вод регулярно анализируется. Проводятся санитарно-химические анализы по определению величины ХПК (общая концентрация органических веществ); БПК (концентрация органических соединений, окисляемых биологическим путем); концентрация взвешенных веществ; активной реакции среды; интенсивности окраски; степени минерализации; концентрации биогенных элементов (азота, фосфора, калия) и др. Наиболее сложны по составы сточные воды промышленных предприятий. На формирование производственных сточных вод влияет вид перерабатываемого сырья, технологический процесс производства, применяемые реагенты, промежуточные изделия и продукты, состав исходной воды, местные условия и др. Для разработки рациональной схемы водоотведения и оценки возможности повторного использования сточных вод изучается состав и режим водоотведения не только общего стока промышленного предприятия, но также сточных вод от отдельных цехов и аппаратов. Помимо определения основных санитарно-химических показателей в производственных сточных водах определяются концентрации специфических компонентов, содержание которых предопределяется технологическим регламентом производства и номенклатурой применяемых веществ. Поскольку производственные сточные воды представляют собой наибольшую опасность для водоемов, мы рассмотрим их более подробно. Производственные сточные воды делятся на две основные категории: загрязненные и незагрязненные (условно чистые).Загрязненные производственные сточные воды подразделяются на три группы. 1.Загрязненные преимущественно минеральными примесями (предприятия металлургической, машиностроительной, рудо- и угледобывающей промышленности; заводы по производству кислот, строительных изделий и материалов, минеральных удобрений и др). 2.Загрязненные преимущественно органическими примесями (предприятия мясной, рыбной, молочной, пищевой, целлюлозно-бумажной, микробиологической, химической промышленности; заводы по производству каучука, пластмасс и др). 3.Загрязненные минеральными и органическими примесями (предприятия нефтедобывающей, нефтеперерабатывающей, текстильной, легкой, фармацевтической промышленности; заводы по производству сахара, консервов, продуктов органического синтеза и др.). Кроме вышеуказанных 3 групп загрязненных производственных сточных вод имеет место сброс нагретых вод в водоем, что является причиной так называемых тепловых загрязнений. Производственные сточные воды могут различаться по концентрации загрязняющих веществ, по степени агрессивности и т.д. Состав производственных сточных вод колеблется в значительных пределах, что вызывает необходимость тщательного обоснования выбора надежного и эффективного метода очистки в каждом конкретном случае. Получение расчетных параметров и технологических регламентов обработки сточных вод и осадка требуют весьма продолжительных научных исследований, как в лабораторных, так и полупроизводственных условиях. Количество производственных сточных вод определяется в зависимости от производительности предприятия по укрупненным нормам водопотребления и водоотведения для различных отраслей промышленности. Норма водопотребления - это целесообразное количество воды, необходимого для производственного процесса, установленная на основании научно обоснованного расчета или передового опыта. В укрупненную норму водопотребления входят все расходы воды на предприятии. Нормы расхода производственных сточных вод применяют при проектировании вновь строящихся и реконструкции действующих систем водоотведения промышленных предприятий. Укрупненные нормы позволяют дать оценку рациональности использования воды на любом действующем предприятии. В составе инженерных коммуникаций промышленного предприятия, как правило, имеется несколько водоотводящих сетей. Незагрязненные нагретые сточные воды поступают на охладительные установки (брызгальные бассейны, градирни, охладительные пруды), а затем возвращаются в систему оборотного водообеспечения. Загрязненные сточные воды поступают на очистные сооружения, а после очистки часть обработанных сточных вод подается в систему оборотного водообеспечения в те цеха, где ее состав удовлетворяет нормативным требованиям. Эффективность использования воды на промышленных предприятиях оценивается такими показателями, как количество использованной оборотной воды, коэффициентом ее использования и процентом ее потерь. Для промышленных предприятий составляется баланс воды, включающий расходы на различные виды потерь, сбросы и добавление компенсирующих расходов воды в систему. Проектирование вновь строящихся и реконструируемых систем водоотведения населенных пунктов и промышленных предприятий должно осуществляться на основе утвержденных в установленном порядке схем развития и размещения отрасли народного хозяйства, отраслей промышленности и схем развития и размещения производительных сил по экономическим районам. При выборе систем и схем водоотведения должна учитываться техническая, экономическая и санитарная оценки существующих сетей и сооружений, предусматриваться возможность интенсификации их работы. При выборе системы и схемы водоотведения промышленных предприятий необходимо учитывать: 1) требования к качеству воды, используемой в различных технологических процессах; 2) количество, состав и свойства сточных вод отдельных производственных цехов и предприятия в целом, а также режимы водоотведения; 3) возможность сокращения количества загрязненных производственных сточных вод путем рационализации технологических процессов производства; 4) возможность повторного использования производственных сточных вод в системе оборотного водообеспечения или для технологических нужд другого производства, где допустимо применять воды более низкого качества; 5) целесообразность извлечения и использования веществ, содержащихся в сточных водах; 6) возможность и целесообразность совместного отведения и очистки сточных вод нескольких близко расположенных промышленных предприятий, а также возможность комплексного решения очистки сточных вод промышленных предприятий и населенных пунктов; 7) возможность использования в технологическом процессе очищенных бытовых сточных вод; 8) возможность и целесообразность использования бытовых и производственных сточных вод для орошения сельскохозяйственных и технических культур; 9) целесообразность локальной очистки сточных вод отдельных цехов предприятия; 10) самоочищающую способность водоема, условия сброса в него сточных вод и необходимую степень их очистки; 11) целесообразность применения того или иного метода очистки. При вариантном проектировании водоотводящих систем и очистных сооружений на основании технико-экономических показателей принимается оптимальный вариант. Водоемы загрязняются в основном в результате спуска в них сточных вод от промышленных предприятий и населенных пунктов. В результате сброса сточных вод изменяются физические свойства воды (повышается температура, уменьшается прозрачность, появляются окраска, привкусы, запахи); на поверхности водоема появляются плавающие вещества, а на дне образуется осадок; изменяется химический состав воды (увеличивается содержание органических и неорганических веществ, появляются токсичные вещества, уменьшается содержание кислорода, изменяется активная реакция среды и др.); изменяется качественный и количественный бактериальный состав ,появляются болезнетворные бактерии. Загрязненные водоемы становятся непригодными для питьевого, а часто и для технического водоснабжения; теряют рыбохозяйственное значение и т.д. Общие условия выпуска сточных вод любой категории в поверхностные водоемы определяются народнохозяйственной их значимостью и характером водопользования. После выпуска сточных вод допускается некоторое ухудшение качества воды в водоемах, однако это не должно заметно отражаться на его жизни и на возможности дальнейшего использования водоема в качестве источника водоснабжения, для культурных и спортивных мероприятий, рыбохозяйственных целей. Наблюдение за выполнением условий спуска производственных сточных вод в водоемы осуществляется санитарно-эпидемиологическими станциями и бассейновыми управлениями. Нормативы качества воды водоемов хозяйственно-питьевого и культурно-бытового водопользования устанавливают качество воды для водоемов по двум видам водопользования: к первому виду относятся участки водоемов, используемые в качестве источника для централизованного или нецентрализованного хозяйственно-питьевого водоснабжения, а также для водоснабжения предприятий пищевой промышленности; ко второму виду - участки водоемов, используемые для купания, спорта и отдыха населения, а также находящиеся в черте населенных пунктов. Отнесение водоемов к тому или иному виду водопользования проводится органами Государственного санитарного надзора с учетом перспектив использования водоемов. Приведенные в правилах нормативы качества воды водоемов относятся к створам, расположенным на проточных водоемах на 1 км выше ближайшего по течению пункта водопользования, а на непроточных водоемах и водохранилищах на 1км в обе стороны от пункта водопользования. Большое внимание уделяется вопросам предупреждения и устранения загрязнений прибрежных районов морей. Нормативы качества морской воды, которые должны быть обеспечены при спуске сточных вод, относятся к району водопользования в отведенных границах и к створам на расстоянии 300 м в стороны от этих границ. При использовании прибрежных районов морей в качестве приемника производственных сточных вод содержание вредных веществ в море не должно превышать ПДК, установленные по санитарно-токсикологическому, общесанитарному и органолептическому лимитирующим показателям вредности. При этом требования к спуску сточных вод дифференцированы применительно к характеру водопользования. Море рассматривается не как источник водоснабжения, а как лечебный оздоровительный, культурно бытовой фактор. Поступающие в реки, озера, водохранилища и моря загрязняющие вещества вносят значительные изменения в установившийся режим и нарушают равновесное состояние водных экологических систем. В результате процессов превращения загрязняющих водоемы веществ, протекающих под воздействием природных факторов, в водных источниках происходит полное или частичное восстановление их первоначальных свойств. При этом могут образовываться вторичные продукты распада загрязнений, оказывающих отрицательно влияние на качество воды. Самоочищение воды водоемов - это совокупность взаимосвязанных гидродинамических, физико-химических, микробиологических и гидробиологических процессов, ведущих к восстановлению первоначального состояния водного объекта. В связи с тем, что в сточных водах промышленных предприятий могут содержаться специфические загрязнения, их спуск в городскую водоотводящую сеть ограничен рядом требований. Выпускаемые в водоотводящую сеть производственные сточные воды не должны: нарушать работу сетей и сооружений; оказывать разрушающего воздействия на материал труб и элементы очистных сооружений; содержать более 500мг/л взвешенных и всплывающих веществ; содержать вещества, способные засорять сети или отлагаться на стенках труб; содержать горючие примеси и растворенные газообразные вещества, способные образовывать взрывоопасные смеси; содержать вредные вещества, препятствующие биологической очистке сточных вод или сбросу в водоем; иметь температуру выше 40 С. Производственные сточные воды не удовлетворяющие этим требованиям, должны предварительно очищаться и лишь после этого сбрасываться в городскую водоотводящую сеть. Основные методы очистки сточных вод Методы, применяемые для очистки производственных и бытовых сточных вод, можно разделить на три группы: механические; физико-химические, биологические. В комплекс очистных сооружений, как правило, входят сооружения механической очистки. В зависимости от требуемой степени очистки они могут дополняться сооружениями биологической либо физико-химической очистки, а при более высоких требованиях в состав очистных сооружений включаются сооружения глубокой очистки. Перед сбросом в водоем очищенные сточные воды обеззараживаются, образующийся на всех стадиях очистки осадок или избыточная биомасса поступает на сооружения по обработке осадка. Очищенные сточные воды могут направляться в оборотные системы водообеспечения промышленных предприятий, на сельскохозяйственные нужды или сбрасываться в водоем. Обработанный осадок может утилизироваться, уничтожаться или складироваться. Механическая очистка применяется для выделения из сточных вод нерастворенных минеральных и органических примесей. Как правило, она является методом предварительной очистки и предназначена для подготовки сточных вод к биологическим или физико-химическим методам очистки. В результате механической очистки обеспечивается снижение взвешенных веществ до 90%,а органических веществ до 20%. В состав сооружений механической очистки входят решетки, различного вида уловители, отстойники, фильтры. Песколовки применяются для выделения из сточных вод тяжелых минеральных примесей (в основном песка). Обезвоженный песок при надежном обеззараживании может быть использован при производстве дорожных работ и изготовлении строительных материалов. Усреднители применяются для регулирования состава и расхода сточных вод. Усреднение достигается либо дифференцированием потока поступающей сточной воды, либо интенсивным перемешиванием отдельных стоков. Первичные отстойники применяются для выделения из сточных вод взвешенных веществ, которые под действием гравитационных сил оседают на дно отстойника, или всплывают на его поверхность. Для очистки сточных вод, содержащих нефть и нефтепродукты, при концентрациях более 100 мг/л применяют нефтеловушки. Эти сооружения представляют собой прямоугольные резервуары, в которых происходит разделение нефти и воды за счет разности их плотностей. Нефть и нефтепродукты всплывают на поверхность, собираются и удаляются из нефтеловушки на утилизацию. Биологическая очистка - широко применяемый на практике метод обработки бытовых и производственных сточных вод. В его основе лежит процесс биологического окисления органических соединений, содержащихся в сточных водах. Биологическое окисление осуществляется сообществом микроорганизмов, включающим множество различных бактерий, простейших и ряд более высокоорганизованных организмов-водорослей, грибов и т.д., связанных между собой в единый комплекс сложными взаимоотношениями (метабиоза, симбиоза и антагонизма). Химические и физико-химические методы очистки играют значительную роль при обработке производственных сточных вод. Они применяются как самостоятельные, так и в сочетании с механическими и биологическими методами. Нейтрализация применяется для обработки производственных сточных вод многих отраслей промышленности, содержащих щелочи и кислоты. Нейтрализация сточных вод осуществляется с целью предупреждения коррозии материалов водоотводящих сетей и очистных сооружений, нарушения биохимических процессов в биологических окислителях и водоемах.

  • 923. Использование древесной биомассы для получения энергии
    Контрольная работа пополнение в коллекции 14.10.2011

    В настоящее время 30 % заготовленной в Ленинградской области древесины идёт на экспорт. 50 % для предприятий ЦБП и 20 % (1,6 млн. м3) используется на лесопильных заводах области. При лесопилении образуется около 40 % отходов, которые имеют высокие энергетические показатели и могут быть использованы для получения энергии. Объём отходов лесопильного производства для Ленинградской области составляет около 640 тыс. пл. м3/год, что эквивалентно 164 тыс. тонн угля или 114 тыс. тонн мазута. Россия и Северо-западный регион Российской Федерации в особенности обладают огромным сырьевым потенциалом для развития биоэнергетики. Однако доля использования биотоплива в муниципальных котельных Ленинградской области незначительна, из 534 котельных только 12 (2,2 %) [6] используют древесное топливо. В Швеции 15 % всей производимой энергии получается за счёт древесного топлива. Используя опыт Швеции и других экономически развитых стран, можно поэтапно осуществить перевод собственных энергетических мощностей на биотопливо. При содействии Шведской Энергетической Администрации (STEM) на Северо-западе России уже осуществлён ряд таких проектов. Работы по повышению эффективности энергопотребления включают в себя реконструкцию систем передачи тепла в зданиях и тепловых сетях, снижение теплопотерь. В результате выполнения текущих проектов уменьшение эмиссии СО2 оценивается в 250000 тонн в год, SО2 - по крайней мере 2500 тонн в год и NО2 - больше 100 тонн в год. Труднее поддается измерению уменьшение эмиссии в результате мер по энергосбережению при передаче тепла и теплопотребления. Однако можно сказать, что в результате этих мер достигается экономия по меньшей мере 30 % энергии. Многие и вышеуказанные объекты располагают собственным источником древесного топлива. Средняя инвестиционная стоимость таких проектов составляет около 100 долл. США на кВт. Период окупаемости оценивается в 3 - 5 лет. Очень важно, что в этих проектах проблема теплоснабжения решается комплексно, то есть совместно с применением энергосберегающих технологий, основанных на применении новых или усовершенствованных технологических процессов, происходит более эффективное использование топливно-энергетических ресурсов.

  • 924. Использование информации о почвах для восстановления ландшафтного разнообразия степей
    Статья пополнение в коллекции 12.01.2009

    Целый пласт информации о биогеоценозах, утраченных в результате хозяйственного освоения, позволяет получить микроморфологический анализ почв. Исследования позволяют выделить растительные остатки разной степени разложения, обрывки растительной ткани, законсервированные накоплением глинистых частиц, обугленные растительные остатки. Существует возможность судить не только о высшей растительности, но и о сообществах низших растений и населении животных. Методами микроморфологии обнаруживаются остатки микроскопических грибов и водорослей, в частности скелеты диатомовых водорослей, разнообразные копролиты, остатки скелетов и раковин. Выявленные анализом микростроения почв особенности позволяют не только определить классификационную принадлежность почвы, но и соответствующий ей тип фитоценоза. Так, имеется существенное различие в реликтовых признаках, например, черноземов и солонцов степной зоны, что позволяет обоснованно идентифицировать исходные естественные сообщества. При восстановительных работах выявление мочаристых почв является основанием для решения восстановливать на участке галофитные степные фитоценозы. Песчаному гранулометрическому составу черноземов будут соответствовать псаммофитные степи. Исходя из почвенной информации, можно прогнозировать ход и развитие сукцессионного процесса, выбирать наиболее выгодные стратегии и сценарии восстановления.

  • 925. Использование материалов экологического аудита для экологического обучения
    Доклад пополнение в коллекции 12.01.2009

    В начале 90-х годов были разработаны стандарты систем экологического менеджмента, наиболее известные из них “Схема эко-менеджмента и аудита” (EMAS) Европейского сообщества и международный стандарт ISO 1400196 “Системы экологического менеджмента. Описание и руководство по применению”. В обоих стандартах для поиска, анализа и выбора путей сокращения воздействия используется специальный инструмент экологический аудит. В соответствии с определением Агентства по охране окружающей среды США, экологический аудит систематическая, документированная, периодическая и объективная оценка реализованных видов деятельности с точки зрения соответствия экологическим требованиям. При этом, в соответствии с принципами устойчивого развития, критерии соответствия и эффективности осуществляемой деятельности при проведении экологического аудита могут быть (и в большинстве случаев являются) более жесткими, нежели чем требования законодательства. Кроме того, в соответствии с рекомендациями стандартов и международным опытом, в рамках системы экологического менеджмента экологический аудит используется для разработки подходов к устранению несоответствий и поиска путей сокращения воздействия на окружающую среду (в соответствии с принципом “постоянного улучшения”, предлагаемым в стандарте ISO 14001). Особый вид экологического аудита предварительная экологическая оценка проводится при внедрении системы экологического менеджмента. Этот вид аудита также подразумевает анализ всех экологических аспектов осуществляемой деятельности, разработку рекомендаций по снижению и контролю воздействия на окружающую среду, анализ эффективности осуществляемой природоохранной деятельности.

  • 926. Использование природных ресурсов, как условие и фактор развития и взаимодействия человека и природы
    Информация пополнение в коллекции 12.01.2009

    Взаимодействие человека и природы, общества и природы имеет два диалектически взаимосвязанных начала: материально-практическое и духовное. Каждый из рассмотренных выше этапов в истории этого взаимодействия означал не только освоение человеком новых пространств планеты и вовлечение все новых и новых природных ресурсов в процесс общественного производства, но также изменение мировоззренческой картины природы и общественного сознания. Духовное освоение природы определялось не только постоянным ростом знаний о природных закономерностях, но и изменением существующих культурных координат той или иной эпохи. Именно культура вырабатывает, хранит и транслирует социально принятые ценностные установки, определяющие цели человеческой деятельности. Потому и видение природы происходит через призму этих ценностей и нормативов. Казалось бы, что все воздействия человека на природу связаны с необходимостью обеспечения материальных компонентов жизни людей. Однако они, эти воздействия, оказываются органически связаны с укоренившимися традициями отношения к бесконечности природных ресурсов, следовательно, возможностей их эксплуатации и получения адекватных жизненных благ. Быстрый рост экономических и научно-технических возможностей получения продукции на основе использования природных ресурсов, а иных источников, позволил экономически и технологически развитым странам мира выработать высокий стандарт потребительских благ. При этом, резко сократилась доля продуктов, направленных на удовлетворение биологических потребностей - питания и одежды и многократно возросла доля сервиса, непосредственно не создающего материальные блага, гипертрофировалась доля военно-промышленного комплекса, направленность которого объективно ориентирована исключительно на разрушение природных объектов и социальных структур общества.

  • 927. Использование радиоактивационного метода в анализе объектов окружающей природной среды
    Курсовой проект пополнение в коллекции 10.01.2010

    7. LUCACIU A., FRONTASYEVA M.V.,.STEINNES E. Atmospheric deposition of heavy metals in Romania studied by the moss technique employing nuclear and related analytical techniques and GIS technology. J. Radioanal. Nucl. Chem., 1999, V. 240, No.2. P. 457-458.

    1. FRONTASYEVA M.V., YERMAKOVA YE.V., STEINNES E., RAHN K.A. Study of trace elements in annual segments of moss biomonitors using epithermal neutron activation analysis: link with atmostheric aerosol. // Proceedings of NATO ARW «Man-Made Radionuclides and Heavy Metals in the Environment». (M.V.Frontasyeva, P.Vater and V.P.Peregyginedts.) Kluwer Academic Publishers, NATO Science Series. 2001, IV. Earth and Environmental Sciences Vol. 5. P. 165-170.
    2. Frontasyeva M.V.,.bunov A.V et al. Nuclear and Related Analytical Techniques Used for Workplace Monitoring and Occupational Health Studies// Preprint of JINR, E14-98-392, Dubna, 1998.
    3. MOSULISHVILI L.M., KIRKESALI YE.I BELOKOBILSKY., A.I., KHIZANISHVILI A.I., FRONTASYEVA M.V., GUNDORINA S.F., OPREA C.D. Epithermal neutron activation analysis of blue-green algae Spirulina platensis as a matrix for selenium-containing pharmaceuticals / JINR Preprint E14-2000-225, Dubna, 2000; J. Radioanal. Nucl. Chem., 2002. V. 252. No.1.
    4. MOSULISHVILI L.M., KIRKESALI YE.I., BELOKOBILSKY A.I., KHIZANISHVILI A.I., FRONTASYEVA M.V., PAVLOV S.S., GUNDORINA S.F. Nuclear analytical technique used to study the possibility of production of iodine-containing pharmaceuticals based on blue-green algae Spirulina platensis matrix for treatment and prophylactics // Particles and Nuclei, Letters, 2001, No. 4 [107]. P. 110-117 (in Russian).
    5. TSERTSVADZE L.A.,.DZADZAMIA T.D, PETRIASHVILI SH.G., SHUTKERASHVILI D.G., KIRKESALI E.I., FRONTASYEVA M.V, PAVLOV S.S., GUNDORINA S.F. Proceedings of NATO ARW «Man-Made Radionuclides and Heavy Metals in the Environment». (M.V.Frontasyeva, P.Vater and V.P.Peregyginedts.) Kluwer Academic Publishers // NATO Science Series. 2001, IV. Earth and Environmental Sciences Vol. 5. P. 1245-257.
    6. И.И.Садыков, М.М.Усманова, М.И.Салимов, З.О.Садыкова. Нейтронно-активационное определение содержания золота и серебра в хвостах золотодобывающих предприятий
  • 928. Использование солнечной энергии
    Информация пополнение в коллекции 09.12.2008

    А вот австралийский инженер Ганс Толструп назвал свой солнцемобиль «Тише едешь дальше будешь». Конструкция его предельно проста: трубчатая стальная рама, на которой укреплены колеса и тормоза от гоночного велосипеда. Корпус машины сделан из стеклопластика и напоминает собой обыкновенную ванну с небольшими окошками. Сверху все это сооружение накрыто плоской крышей, на которой закреплено 720 кремниевых фотоэлементов. Ток от них поступает в электромотор мощностью в 0,7 киловатта. Путешественники (а кроме конструктора, в пробеге участвовал инженер и автогонщик Ларри Перкинс) поставили своей задачей пересечь Австралию от Индийского океана до Тихого (это 4130 километров!) не более чем за 20 дней. В начале 1983 года необычный экипаж стартовал из города Перт, чтобы финишировать в Сиднее. Нельзя сказать, чтобы путешествие было особенно приятным. В разгар австралийского лета температура в кабине поднималась до 50 градусов. Конструкторы экономили каждый килограмм веса машины и поэтому отказались от рессор, что отнюдь не способствовало комфортабельности. В пути лишний раз останавливаться не хотели (ведь поездка не должна была продолжаться более 20 дней), а радиосвязью пользоваться было невозможно из-за сильного шума мотора. Поэтому гонщикам приходилось писать записки для группы сопровождения и выбрасывать их на дорогу. И все-таки, несмотря на трудности, солнцемобиль неуклонно продвигался к цели, находясь в пути 11 часов ежедневно. Средняя скорость машины составила 25 километров в час. Так, медленно, но верно, солнцемобиль преодолел самый трудный участок дороги Большой Водораздельный хребет, и на исходе контрольных двадцатых суток торжественно финишировал в Сиднее. Здесь путешественники вылили в Тихий океан воду, взятую ими в начале пути из Индийского. «Солнечная энергия соединила два океана», заявили они многочисленным присутствовавшим журналистам.

  • 929. Использование торфяных мелиорантов для реабилитации нефтезагрязненных почв Нефтеюганского района
    Доклад пополнение в коллекции 12.01.2009

    Нами осуществляются два пилотных проекта по проверке эффективности торфяного мелиоранта на деструкцию нефтяных углеводородов в почвенных условиях: один - на дерново-подзолистой почве при уровне загрязнения 2,5-3,0 % на глубину 10-12 см (загрязнение нефтью произошло в июне 2000 г.), другой - на территории 139 куста Усть-Балыкского нефтяного месторождения Нефтеюганского района. Разлив нефти на участке произошел в 1996 году, участок загрязненной почвы обводнен, засыпан песком, нефть выдавлена на поверхность, уровень загрязнения составлял 15-20%.

  • 930. Исследование аспектов применения атомной энергии для решения проблем энергоснабжения районов Крайнег...
    Информация пополнение в коллекции 09.12.2008

    Выше были разобраны источники потенциальной опасности, которые принимаются во внимание при разработке систем безопасности. Разработчики утверждают, что современные подходы к строительству станций значительно уменьшают как количества отходов, так и возможности их утечки. Исходя из имеющихся материалов проекта, все жидкие и твердые радиоактивные отходы в период эксплуатации хранятся на плавучем энергоблоке и транспортируются специальными судами на базовые хранилища при заводских ремонтах. Для сбора и временного хранения низкоактивных и среднеактивных отходов на ПЭБ имеются специальные цистерны и контейнеры, размещенные в защитных боксах. В частности в рассматриваемом проекте эти отходы будут передаваться для дальнейшей переработки и утилизации на базу Мурманского морского пароходства. Перегрузку активных зон предполагается осуществлять с периодичностью один раз в 3 года с размещением отработавшего ядерного топлива (ОЯТ) в хранилище самой плавучей АЭС в течение межремонтного периода (10-12 лет). С учетом наличия на борту шести топливных загрузок можно обеспечить работу АЭС без вывоза топлива в течение 15-16 лет, что позволяет упростить обслуживание. Для сравнения, обычные наземные АЭС требуют вывоза топлива каждые 3-4 года.

  • 931. Исследование аспектов применения атомной энергии для решения проблем энергоснабжения районов Крайнего Севера
    Информация пополнение в коллекции 12.01.2009

    Выше были разобраны источники потенциальной опасности, которые принимаются во внимание при разработке систем безопасности. Разработчики утверждают, что современные подходы к строительству станций значительно уменьшают как количества отходов, так и возможности их утечки. Исходя из имеющихся материалов проекта, все жидкие и твердые радиоактивные отходы в период эксплуатации хранятся на плавучем энергоблоке и транспортируются специальными судами на базовые хранилища при заводских ремонтах. Для сбора и временного хранения низкоактивных и среднеактивных отходов на ПЭБ имеются специальные цистерны и контейнеры, размещенные в защитных боксах. В частности в рассматриваемом проекте эти отходы будут передаваться для дальнейшей переработки и утилизации на базу Мурманского морского пароходства. Перегрузку активных зон предполагается осуществлять с периодичностью один раз в 3 года с размещением отработавшего ядерного топлива (ОЯТ) в хранилище самой плавучей АЭС в течение межремонтного периода (10-12 лет). С учетом наличия на борту шести топливных загрузок можно обеспечить работу АЭС без вывоза топлива в течение 15-16 лет, что позволяет упростить обслуживание. Для сравнения, обычные наземные АЭС требуют вывоза топлива каждые 3-4 года.

  • 932. Исследование влияния деятельности ОАО "Турбоатом" на жизнедеятельность г. Харькова
    Дипломная работа пополнение в коллекции 13.09.2010

    №п/пНаименование отходаФизико-химические характеристики отходаТехпроцесс образования отходовКласс опасностиКол-во, т/годОбращение с отходамиНа предприятииВозможные пути утилизации1Отработанные люминесцентные лампыТвердые, негорючие, нерастворимые в воде, ядовитые, ртуть-0,01%, стекло-60%, алюминий -30%, люминофор-9,99%Освещение12500 шт.Передача Государственному специализированному автотранспортному предприятию по перевозке опасных грузовДемеркуризация. Извлечение ртути, стекла и металла2Отходы содержащие свинец и его соединенияТвердые, негорючие, нерастворимые в воде, свинец и его соединения-100%Механическая обработка деталей из металла10,146Передача Государственному специализированному автотранспортному предприятию по перевозке опасных грузовВыплавка свинца.3Отработанные щелочные аккумуляторыТвердые, негорючие, КОН-15%,LiOH-10%, Ni-65% K2CO3<1%c конц. 0,2мг/л LiCl max 0,01%, Li2SO4 max 0,3%, Li2CO3 max 3,5%, K2SO4<100 мг с конц. 4 г/л, Ca, Mg - 0,1% нерастворимые в воде остатки 0,1%.Ремонт и обслуживание автотранспорта12,950Передача Государственному специализированному автотранспортному предприятию по перевозке опасных грузовВыплавка никеля4Отработанные кислотные аккумуляторыТвердые, негорючие, свинец 62,5%, соли свинца 2,5%, сурьма 5%, эбонит, термопласт 30 %.Ремонт и обслуживание автотранспорта11,125Передача Государственному специализированному автотранспортному предприятию по перевозке опасных грузовВыплавка свинца, производство пластмассового гранулянта5Отработанные нефтемаслаОрганические, жидкие, нерастворимые в воде, горючие, невзрывоопасн. С12-С15-50%, минеральные загрязняющие-20%, вода-10%, фракция угле- рода аморфного-20%Металлообработка,

  • 933. Исследование загрязнения приземного слоя воздуха г.Москвы от вредных выбросов тепловых электрических станций
    Информация пополнение в коллекции 12.01.2009

    Для проведения эксперимента выбиралось холодное время года, которое характеризуется нагрузкой электростанций, близкой к номинальной, и, следовательно, максимальными выбросами исследуемых ингредиентов. В то же время, в холодный период года в топливном балансе велика доля мазута, что позволяет исследовать рассеивание как пассивных (="Arial Unicode MS" COLOR="#000000">SO2), так и химически превращающихся (NOx)примесей, а расположение ТЭЦ на окраине города свести к минимуму влияние других источников загрязнения. Исследования носили комплексный характер и включали следующие виды работ: определение режимных параметров и выбросов из всех котлов ТЭЦ на основании измерений и расчетным путем; метеорологические измерения скорости, температуры и направления ветра в 500-метровом пограничном слое атмосферы на восьми уровнях с помощью Останкинского высотного метеокомплекса; измерение подфакельных и фоновых концентраций оксидов азота и диоксида серы, концентраций озона в приземном слое и определение трансформации NOхпри движении факела в атмосфере с помощью передвижных лабораторий. Всего проведено три серии экспериментов с участием ЭНИНа, МосЦГКС, Мосэнергоналадки, Института газа АН Украины под общим руководством МЭИ.

  • 934. Исследование и охрана природного наследия Зейского района
    Информация пополнение в коллекции 12.01.2009

    Вблизи города Зея в распадке хребта Тукурингра (севернее) отмечена популяция пиона обратнояйцевидного (20 экземпляров). Задача наших экспедиций была найти места произрастания пиона обратнояйцевидного. В 1997 году мы обследовали 2 района у села Чалбачи. Южнее села нами было проведено обследование ряда сопок, но растения не обнаружено. На северо-востоке от села Чалбачи в распадках хребтов у озера Длинного мы обнаружили 3 популяции пионов, причем 2 популяции недалеко от озера имеют от 100 до 200 экземпляров. Маршрутный учет в этих распадках показал, что пион обратнояйцевидный встречается по всему рападку на 1000 м. 3-я популяция была обнаружена в распадке с южной стороны на бывшей лесовозной дороге (25 штук). В 1997 г. В экспедиции на озеро Подгорное при обследовании распадков также обнаружена небольшая популяция пиона обратнояйцевидного (18 штук). Еще один участок этого растения найден за селом Овсянка, под пологом смешанного леса реки Уркан (12-20 экземпляров).

  • 935. Исследование и прогноз развития систем расселения населения Среднего Приобья
    Доклад пополнение в коллекции 12.01.2009

    Изучение формирования населения Среднего Приобья проводилось за длительный период времени. Для различных типов поселений этого района характерны общие черты, которые на начальном этапе заселения территории определялись приуроченностью населенных пунктов к рекам. Это объясняется тем, что реки служили основными транспортными магистралями. Лишь в период освоения эта тенденция нарушается, в связи с открытием месторождений нефти и газа, строительством железных и автомобильных дорог, освоением новых территорий, где и складывается новая сеть поселений. В настоящее время здесь преобладают, главным образом, городские населенные пункты (доля городского населения, на 01.01.98, в ХМАО составляет 91,5%, в Среднем Приобье - 95%). Регион характеризуется значительными контрастами в населенности: от густонаселенных промышленных центров до обширных малонаселенных пространств северотаежных лесов, не затронутых освоением. На территории Среднеобского Севера расположено 10 городов и 6 поселков городского типа, с общей численностью 958,3 тыс. чел. (на 01.01.98). Численность сельского населения составляет 48,2 тыс. чел.

  • 936. Исследование и разработка декларации безопасности опасного производственного объекта
    Курсовой проект пополнение в коллекции 27.08.2012

    Поступающая на установку паровоздушная смесь (в первом случае воздух с парами бензола, во втором - воздух с парами бензина) имеет концентрацию 20 г. горючего вещества в 1 м3 воздуха. Паровоздушная смесь подсасывается на установку центробежным вентилятором и под избыточным давлением 400 мм. рт. ст. и температуре 20°С поступает в адсорбер V1 . Находящийся в адсорбере активированный уголь поглощает 90% паров горючего вещества из паровоздушной смеси, а воздух с остатком пара выбрасывается в атмосферу. В адсорбере V2 в этот же момент (т.е. когда в адсорбере V1 идёт поглощение) происходит процесс десорбции - обратное извлечение из активированного угля паров растворителя. Для осуществления процесса десорбции в адсорбер подают водяной пар давлением 0,3 МПа. Смесь водяного пара и извлеченных из угля паров растворителя поступает в холодильник-конденсатор T на конденсацию. Охлаждение паров в конденсаторе происходит за счёт подачи через трубки холодной воды. Полученный в холодильнике T конденсат, представляющий собой смесь горючей жидкости (бензола, бензина) и вода, поступает в отстойник V3 на разделение эмульсии путем её расслаивания. Вода, как наиболее тяжёлая, скапливается в нижней части отстойника и отводится в канализацию. Горючая жидкость, как более лёгкая, из верхней части отстойника V3 насосом подаётся в ёмкость растворителя V4. Емкость имеет дыхательную трубу . Несконденсировавшиеся пары из отстойника поступают снова в адсорбер на улавливание. После процесса адсорбции паров адсорбер V1 переключается на десорбцию, а адсорбер V2 после десорбции переключается на адсорбции паров растворителя, т.е. пропускают через него паровоздушную смесь. Для сушки увлажнённого после десорбции угля, пропускаемого через адсорбер, паровоздушную смесь подогревают некоторое время в кожухотрубчатом паровом подогревателе до температуры 80°С. При аварийной ситуации на ректификационной станции ПВС выбрасывается в атмосферу по трубе. От распространения пламени линии ПВС защищены гравийными огнепреградителями, а для защиты их от разрушения при взрыве имеются мембранные предохранительные клапаны.

  • 937. Исследование методики проведения санитарно-экологического состояния объекта
    Дипломная работа пополнение в коллекции 16.05.2011

    UТермодинамические свойства простого веществаПлотность <http://ru.wikipedia.org/wiki/%D0%9F%D0%BB%D0%BE%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%8C_%D0%B2%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B0>19,05 <http://ru.wikipedia.org/wiki/%D0%93%D1%80%D0%B0%D0%BC%D0%BC>/см <http://ru.wikipedia.org/wiki/%D0%A1%D0%B0%D0%BD%D1%82%D0%B8%D0%BC%D0%B5%D1%82%D1%80>³Молярная теплоёмкость <http://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BB%D1%8F%D1%80%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D1%91%D0%BC%D0%BA%D0%BE%D1%81%D1%82%D1%8C>27,67[1] <http://ru.wikipedia.org/wiki/%D0%A3%D1%80%D0%B0%D0%BD_(%D1%8D%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82)>Дж <http://ru.wikipedia.org/wiki/%D0%94%D0%B6%D0%BE%D1%83%D0%BB%D1%8C>/(<http://ru.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BB%D1%8C%D0%B2%D0%B8%D0%BD>·моль <http://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BB%D1%8C>)Теплопроводность <http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D1%8C>27,5 Вт <http://ru.wikipedia.org/wiki/%D0%92%D0%B0%D1%82%D1%82>/(<http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D1%80>·<http://ru.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BB%D1%8C%D0%B2%D0%B8%D0%BD>)Температура плавления <http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BC%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D1%83%D1%80%D0%B0_%D0%BF%D0%BB%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F>1405,5 <http://ru.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BB%D1%8C%D0%B2%D0%B8%D0%BD>Теплота плавления <http://ru.wikipedia.org/wiki/%D0%A3%D0%B4%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D1%82%D0%B0_%D0%BF%D0%BB%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F>12,6 кДж <http://ru.wikipedia.org/wiki/%D0%94%D0%B6%D0%BE%D1%83%D0%BB%D1%8C>/моль <http://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BB%D1%8C>Температура кипения <http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BC%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D1%83%D1%80%D0%B0_%D0%BA%D0%B8%D0%BF%D0%B5%D0%BD%D0%B8%D1%8F>4018 <http://ru.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BB%D1%8C%D0%B2%D0%B8%D0%BD>Теплота испарения <http://ru.wikipedia.org/wiki/%D0%A3%D0%B4%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D1%82%D0%B0_%D0%B8%D1%81%D0%BF%D0%B0%D1%80%D0%B5%D0%BD%D0%B8%D1%8F>417 кДж <http://ru.wikipedia.org/wiki/%D0%94%D0%B6%D0%BE%D1%83%D0%BB%D1%8C>/моль <http://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BB%D1%8C>Молярный объём <http://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BB%D1%8F%D1%80%D0%BD%D1%8B%D0%B9_%D0%BE%D0%B1%D1%8A%D1%91%D0%BC>12,5 см <http://ru.wikipedia.org/wiki/%D0%A1%D0%B0%D0%BD%D1%82%D0%B8%D0%BC%D0%B5%D1%82%D1%80>³/моль <http://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BB%D1%8C>Кристаллическая решётка простого веществаСтруктура решётки <http://ru.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%81%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%86%D0%B8%D1%8F_%D0%BA%D1%80%D0%B8%D1%81%D1%82%D0%B0%D0%BB%D0%BB%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85_%D1%80%D0%B5%D1%88%D1%91%D1%82%D0%BE%D0%BA>орторомбическаяПараметры решётки <http://ru.wikipedia.org/wiki/%D0%9F%D0%B5%D1%80%D0%B8%D0%BE%D0%B4_%D0%BA%D1%80%D0%B8%D1%81%D1%82%D0%B0%D0%BB%D0%BB%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B9_%D1%80%D0%B5%D1%88%D1%91%D1%82%D0%BA%D0%B8>2,850 <http://ru.wikipedia.org/wiki/%D0%90%D0%BD%D0%B3%D1%81%D1%82%D1%80%D0%B5%D0%BC>Отношение c/an/aТемпература Дебая <http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BC%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D1%83%D1%80%D0%B0_%D0%94%D0%B5%D0%B1%D0%B0%D1%8F>n/a <http://ru.wikipedia.org/wiki/%D0%9A%D0%B5%D0%BB%D1%8C%D0%B2%D0%B8%D0%BD>

  • 938. Исследование наличия ртути в различных объектах окружающей среды г. Донецка
    Статья пополнение в коллекции 12.01.2009

    Наименование шахтыМарт 2005Июнь 2005Сентябрь 2005Ноябрь 2005Мушкетовская0.00070.00060.00060.0005Им. Калинина0.00100.00070.00080.0008Кировская0.00090.00080.00080.0006 Как видно из полученных результатов значения концентраций ртути превышают предельно допустимые для данного элемента и зависят от сезонного времени отбора проб. Этот факт требует особого внимания, так как отсутствие единого подхода к проблеме изучения загрязнения окружающей среды ртутью за счет ее поступления с шахтными водами, отсутствие комплексных методических руководств сдерживает возможность нормализации экологической обстановки в г. Донецке и в целом во всем угледобывающем регионе.

  • 939. Исследование процесса тушения пламени в зазоре
    Информация пополнение в коллекции 12.01.2009

    Перед началом работы необходимо продуть установку воздухом в течение 5 - 10 с, нажав кнопку вентилятора. Жидкое горючее вещество задается преподавателем. Для заданной жидкости выполняются расчеты по приведенным выше формулам (1-4). Поднять щиток 1, через отверстия штуцеров 9 залить горючую жидкость в количестве, рассчитанном по формуле (4). После этого под пластины 10 выхлопных штуцеров заложить листки плотного материала, например, кальку или бумагу. Для полного испарения залитой жидкости внутри полостей выждать 1 - 2 мин. Установить зазор, рассчитанный по формуле (1). Образовавшуюся в полости взрывоопасную смесь паров жидкости с воздухом нужно поджечь искрой, включив зажигание. Фиксировать взрыв по звуку и разрыву мембран на выхлопных штуцерах. Смесь поджигается в одной из камер.

  • 940. Исследование сорбционных свойств углеродистого остатка, полученного в результате пиролиза автошин
    Статья пополнение в коллекции 12.01.2009

    Адсорбция метиленового голубого. Адсорбция метиленового голубого дает представление о поверхности сорбента, образованной порами с диаметрами больше 1,5 нм. Молекула метиленового голубого имеет относительно большие линейные размеры, тем не менее с помощью адсорбционных опытов было установлено, что эта молекула адсорбируется как плоская пластина [4]. Сорбцию метиленового голубого проводили по ГОСТ 4453 74 в диапазоне исходных концентраций от 100 мг/дм3 до 1000 мг/дм3, температура 25ºС. Навеска сорбента была постоянной и составляла 0.40 г, объем раствора 200 см3. Остаточную концентрацию красителя находили по калибровочной кривой. В исследуемом диапазоне концентраций максимальная величина сорбционной емкости твердого остатка пиролиза автомобильных шин составила 320 мг/г, что не ниже аналогичной величины для известных марок активных углей [5]. Вид адсорбционной кривой представлен на рисунке 1.