Принцип возрастания энтропии
2.11. Принцип возрастания энтропии
2.11.1. Понятие энтропии
Понятие энтропии исторически возникло при рассмотрении и изучении тепловых процессов и создании термодинамики. К моменту зарождения термодинамики в естествознании господствовала механика Ньютона, механика обратимых процессов, которые могут идти как в прямом, так и в обратном направлении с так называемым обратимым временем. Например, вращающееся тело проходит при движении одни и те же положения при вращении по часовой стрелке, а затем и против часовой стрелки. Или другой пример: в принципе возможны все механические движения, показанные на кинопленке, при ее прокручивании как в прямом, так и в обратном направлении. В термодинамике в этом отношении все обстоит иначе.
Французский математик и физик Ж.Б. Фурье установил один из основных законов теплопроводности – односторонний переход теплоты от более нагретого тела к менее нагретому. Именно с этого момента начался выход физики за пределы ньютоновой схемы.
При переходе теплоты от более горячего тела к более холодному температуры тел постепенно (т.е. во времени!) выравниваются и становятся едиными для обоих тел – наступает состояние термодинамического равновесия. Таким образом, все системы, содержащие различные тела с разной температурой, естественным образом постепенно переходят в состояние термодинамического равновесия с
выровненной температурой во всех участках данной системы. Такие процессы в силу закона Фурье имеют однонаправленность во времени, в связи с чем появилось понятие необратимости процессов, необратимости времени, «стрелы времени».
Итак, первым важным открытием было открытие того факта, что все протекающие естественным образом (без участия внешних сил) тепловые процессы необратимы.
Второе, не менее важное открытие – установление второго начала (закона) термодинамики – принадлежит С. Карно, который изучал проблему использования теплоты (тепловой энергии) через преобразование ее в механическую энергию для производства работы в тепловых двигателях. Во времена С. Карно это были в основном паровые машины. Результаты своих исследований он изложил в сочинении «Размышления о движущей силе, огне и о машинах, способных развивать эту силу».
Карно установил, что тепловую энергию, которой обладает нагретое тело, непосредственно невозможно превратить в механическую энергию для производства работы. Это можно сделать только в том обязательном случае, если часть тепловой энергии тела с температурой Т1
передать другому телу с меньшей температурой Т2
и, следовательно, нагреть его до большей температуры. Иными словами, в механическую энергию для производства работы можно преобразовать только часть тепловой энергии и только при обязательном условии, что в системе такого преобразователя имеется нагреватель с температурой Т1
и охладитель с температурой Т2, т.е. для производства работы механической системой необходима разность температур Т1 – Т2. Все механические системы, использующие тепло, работают «на перепаде температур» между нагревателем и холодильником. Карно выразил эту мысль следующим образом: Возникновение движущей силы обязано в паровых машинах не действительной трате тепла, но его переходу от горячего тела к холодному… Недостаточно создать теплоту, чтобы вызвать появление движущей силы: нужно еще добавить холод; без него теплота стала бы бесполезной.
Помимо этого, одного из важнейших открытий XIX в., Карно определил ту часть тепловой энергии, которая может быть переведена в производство механической энергии, в производство работы в тепловых машинах, т.е. он нашел значение разности
W = Q1 – Q2,
где W – полученная механическая энергия в процессе преобразования тепловой энергии;
Q1
– полная тепловая энергия, отдаваемая нагретым телом в процессе преобразований энергии;
Q2
– часть тепловой энергии, переданной холодильнику.
Определив разность Q1-Q2, Карно нашел максимальное значение коэффициента полезного действия тепловых машин (для так называемого идеального цикла Карно), которое оказалось равным
закон сохранения энтропии: S1 = S2. Иными словами, в таких процессах холодное тело поглощает столько же энтропии, сколько и выделяется нагретым телом. Реально же все процессы теплопередачи, в соответствии с законом Фурье, являются необратимыми, и при передаче количества тепла Q от горячего тела (с температурой Т1,) к холодному (с температурой Т2) энтропия S1 =
вопрос о ее начальном состоянии.
С 60–70-х гг. XX в. стала общепринятой модель «горячей» Вселенной (предполагается высокая первоначальная температура). В условиях очень высокой температуры (Т > 1013 К) существовала лишь равновесная смесь различных элементарных частиц (включая фотоны и нейтрино). Можно рассчитать состав такой смеси при разных температурах Т, соответствующих последовательным этапам эволюции, найти закон расширения однородной и изотропной Вселенной и изменение ее физических параметров в процессе расширения.
Согласно этому закону во Вселенной в момент дуализм материи?
2. Почему энтропия является мерой порядка и беспорядка в природе?
3. Какова классификация материи на микро-, макро-, мегамиры?
4. Сформулируйте основные законы сохранения.
5. Каково объяснение периодической системы Д.И. Менделеева?
6. Каковы фундаментальные взаимодействия в природе?
7. Какова связь симметрии и законов сохранения?
8. какова связь пространства и времени в специальной теории относительности?
9. В чем различие между динамическими и статистическими закономерностями в природе?
10. Каков смысл принципа дополнительности?