Книги по разным темам Pages:     | 1 |   ...   | 6 | 7 | 8 | 9 | 10 |   ...   | 32 |

Своеобразной технической энциклопедией того времени был также труд итальянского ученого и инженера В. Бирингуччо л О пиротехнике, в котором кроме пиротехнических рассмотрены также вопросы горнорудного, гончарного производства и металлургии. А его современник Д.Кардано, один из основоположников кинематики механизмов и разработавший теорию и практику зубчатого зацепления, изобрел карданный механизм, получивший наибольшее распространение в автомобилях.

Настоящий переворот в естествознании вызвал выход в свет в 1543 г.

сочинения польского астронома Н. Коперника Об обращениях небесных сфер, в котором была обоснована гелиоцентрическая система мира. Работа была запрещена католической церковью, а его продолжатель Д, Бруно, выдвинувший концепцию о бесконечности и бесчисленности миров Вселенной, был обвинен в ереси и сожжен в Риме инквизицией.

Математическое подтверждение коперниковская астрономия получила в трудах немецкого астронома И. Кеплера. Значительный вклад в утверждение гипотезы множественности обитаемых миров внес и М.В. Ломоносов, который, наблюдая за движением планеты Венера, установил на ней наличие атмосферы.

Развитие горного дела Горное дело, как и перерабатывающие промыслы, было организовано по цеховому принципу, при котором разработка руд производилась товариществами (корпорациями) рудокопов. В первую очередь разрабатывались откры тые месторождения (болотные, озерные), но по мере их истощения руду все чаще стали добывать в шахтах.

Способы добычи и применяемая техника практически не отличались от античных, лишь с XII в. в Саксонии начал применяться взрывной метод разработки с применением пороха. С XIV в. для подъема руды на поверхность, ее измельчения и для производства водоотливных работ стали применяться вододействующие устройства, в значительной степени облегчавшие тяжелый труд горняков. Но их внедрение в рассматриваемый период шло весьма медленно.

Большой производственный опыт, накопленный в горнометаллургическом производстве к середине XVI в. в странах Западной Европы, был впервые обобщен в 1550 г. немецким ученым Г. Бауэром, более известным под латинским именем Агрикола. Представление о содержании дает полное и пространное, в духе того времени, название его книги: Георгия Агриколы врача в Хемнице и известного философа о горном деле и металлургии двенадцать книг, в которых обязанности, инструменты, машины и все вообще относящееся к горному делу не только самым достоверным образом описывается, но и столь наглядно показывается при помощи размещенных в соответствующих местах изображений, с присовокуплением их латинских и немецких наименований, что они не могли бы быть переданы с большей ясностью.

В этом выдающемся труде, в частности, была приведена подробная технология сыродутного способа производства железа, а также сведения об изготовлении металлических рам, зубчатых колес и подшипников. Была обоснована идея привода нескольких механизмов от одного источника энергии. Агрикола убедительно показал, что горное дело необходимо всему человечеству, а без металлургии не обходится ни одна область человеческой деятельности.

Более двух веков трактат Агриколы, называемый для краткости О горном деле и металлургии, служил учебником по технике горного дела, металлургии и лабораторному делу. В отличие от сочинений алхимиков этот труд был совершенно лишен налета мистики и шарлатанства.

В своем трактате Агрикола ссылается на книгу лично известного ему итальянского инженера и ученого В. Бирингуччо Пиротехника, изданную в 1540 г. в Венеции. Эта книга была своеобразной технической энциклопедией того времени, в которой кроме пиротехники были широко освещены металлургия,горное дело и гончарное производство. В ней были описаны: шахтная печь для переплавки твердого чугуна, различные способы производства железа и превращения дров в уголь, лаборатория для рудных проб, групповой привод нескольких воздуходувных мехов от одного водяного колеса, устройство для волочения проволоки с приводом от того же колеса через коленчатый рычаг.

Развитие производства чугуна и его переработки в железо Первый процесс получения железа, названный сыродутным, зародившийся в недрах первобытнообщинного строя, существовал в течение многих столетий, обеспечивал металлом рабовладельческое общество и перешел в средневековье.

Для получения мягкого (малоуглеродистого, сварочного) железа повсеместно применялись сыродутные горны небольших размеров, с дутьем от ручных мехов. В качестве топлива применялся древесный уголь, В результате трехчасовой плавки в таком примитивном горне выплавлялась загрязненная шлаком и другими примесями крица, после 5-6-кратной проковки которой получалась железная чушка весом несколько килограммов. За сутки удавалось получить около 500 кг железа, при этом до 70-75% руды уходило в отходы. Метод, как видно, был чрезвычайно трудоемким и непроизводительным.

С развитием производительных сил возрастала и потребность в металле, задувались все новые и новые горны, увеличивались их размеры. С увеличением размеров горнов росла и загрузка шихты, что требовало увеличения мощности дутья, которое не могли обеспечить прежние ручные воздуходувки. С этой проблемой помогло справиться изобретенное в XI-XII вв, водяное колесо, которое было приспособлено металлургами для приведения в действие воздуходувных мехов.

Резкое увеличение размеров горнов и силы дутья привело к тому, что вместо привычной густой массы крицы на дне горна стал появляться жидкий металл, который после застывания становился хрупким, не поддавался ковке и ломался при ударе. Вначале этот металл, позднее названный чугуном, считали просто непригодным и браковали, называя его грязным, сорным камнем или даже свинским железом.

Но вскоре было замечено, что чугун хорошо заполняет формы и из него можно получать качественные отливки, не хуже, чем из меди и бронзы, но более дешевые. Тогда чугун стали выпускать через пробитые в основании горна отверстия (летки) и разливать в формы. Так зародилось чугунное литье, которое в усовершенствованном виде стало в наши дни основным видом литья в машиностроении.

Горны, выросшие в высоту и превратившиеся в шахтные печи, стали называть домницами, а потом доменными печами, или просто домнами. В XIII-XV вв. в Западной Европе стали появляться высокие доменные печи с мощным дутьем, обеспечивающим температуру в нижней части до 1350, а в верхней Ч 750-9000С. Появление доменного процесса для получения чугуна и все возрастающие потребности в металле и прежде всего в стали, которые не мог удовлетворить прежний сыродутный процесс, заставили искать и новый способ переработки чугуна в железо.

Такой способ был найден и сущность его заключалась в том, что в кричной горн стали загружать куски чугуна в смеси с древесным углем, при горении которого происходило расплавление чугуна, окисление его примесей и в первую очередь углерода. Так происходил процесс превращения чугуна в железо, называемой фришеванием, или оздоровлением. По сравнению с сыродутным процессом уменьшились потери металла со шлаками, но самое главное Ч произошел почти стократный скачок в производительности.

Таким образом, в средние века произошла техническая революция в металлургии Ч переход от единого прежде сыродутного способа получения железа к двухступенчатому, включающему доменный и кричной. Двухступенчатый передел в основных чертах сохранился и до наших дней, претерпев определенную модификацию на второй стадии (ступени). Он позволял получать не только чугун и мягкое железо, но и сталь, занимающую по содержанию углерода промежуточное положение.

Еще в первобытные времена были известны способы цементации железа и закалки, позволявшие получать изделия и прежде всего оружие с высокой поверхностной твердостью и мягкой сердцевиной. Технологию процесса цементации древние металлурги держали в строгом секрете и позднее она была утрачена. В средние века упоминание о цементированной стали появилось, в частности, в Книге разных искусств немецкого монаха-пресвитера Теофила.

Неоднородность по содержанию углерода в цементированной стали и его высокая концентрация в поверхностном слое заставили искать способ получения более однородной стали. Так появился тигельный процесс, способ выплавки стали в специальных огнеупорных горшках (тиглях), о котором писал еще Аристотель. Тигельную сталь выплавляли главным образом в странах Древнего Востока (Персии, Индии, Сирии), где она использовалась для производства холодного оружия и инструментов. Но в средние века секреты тигельной плавки также были утеряны и были вновь воссозданы в середине XVIII в, уже за пределами рассматриваемого периода англичанином Б.

Гентсманом.

Развитие металлообработки Металлы и прежде всего железо были средствами войны в античные времена, таковыми они продолжали оставаться и в средние века. Очень медленно, по мере роста мастерства металлургов и совершенствования кузнечного ремесла, железо становилось сырьем и для изготовления орудий труда. Появились профессии кузнецов (ковалей), оружейников, жестянщиков, литейщиков, коло-колыциков, лудильщиков, замочников и др.

Средневековые кузнецы хорошо владели различными сложными приемами и способами механической и термической обработки металлов, особен но при изготовлении оружия и доспехов. На протяжении всего средневековья кузнецы считались самой почтенной и уважаемой категорией ремесленников, причем наибольшим почетом пользовались оружейники. Восток стал поставщиком холодного оружия и слитков дамасской стали, которая на Руси называлась булатом, там же начала использоваться цементация стали.

В XIV-XV вв. стали появляться вододействующие молоты и протяжные устройства для вытягивания проволоки и выделки жести. Для преобразования вращательного движения водяного колеса в колебательное, например молота, широко использовались кулачковые устройства.

В XI в. высокого расцвета достигло бронзовое литье. Бронзовые скульптуры того времени по своему художественному и техническому совершенству по праву принадлежат к самым значительным творениям средневековья. Еще раньше, в V в. в Италии и во Франции, а в X в. на Руси зародилось искусство литья колоколов. Широкое распространение получило литье по восковым моделям, освоенное еще во времена античности. С XIII в. русскими мастерами-литейщиками стал использоваться способ тонкостенного полого литья на выплеск, при котором залитый через верхнее отверстие металл выпускался (выплескивался) через нижнее, застывая в виде тонкой оболочки у стенок.

При изготовлении оружия, доспехов, предметов роскоши и украшений широкое применение получили операции чеканки, гравировки, филиграни (скани), покрытие чернью и позолотой и т. п.

С появлением артиллерии потребовались станки и в первую очередь сверлильно-расточкые, предназначенные для удаления неровностей в каналах литых артиллерийских стволов. При этом в ствол, установленный вертикально, дульной частью вверх, вводилась деревянная расточная борштанга с закрепленными в ней несколькими резцами. Вращение ее вначале осуществлялось вручную с помощью веревки, а позднее от водяного колеса. Существовала и другая схема, при которой ствол располагался сверху и подача его осуществлялась под действием собственного веса. При этом обеспечивался лучший отвод стружки, но усложнялись установка ствола и его вращение.

Со второй половины XVI столетия началась история суппорта. Специальная поддержка в станке для нарезания винтов была впервые описана в труде французского изобретателя Ж.Бессока Театр инструментов, появившемся в 1565 г. Впоследствии это изобретение повторили, но уже в ином виде, в начале XVIII в, русский механик Андрей Нартов, а в конце XVIII в, Ч английский промышленник Г. Модесли.

Французский математик и механик Жак Бессон в середине XVI в. в своей книге Театр инструментов впервые описал токарно-винторезный станок со специальной поддержкой для инструмента, которая была им названа суппортом (англ, и фр. support от лат. supportare -поддерживать). Им же были описаны токарно-копировальные станки, на которых по бронзовым об разцам (копирам) можно было вытачивать неограниченное количество изделий из дерева и кости.

Другим важным совершенствованием станков явилось отделение привода от станка, что позволило не только повысить производительность обработки, но и полностью освободить руки рабочего для управления суппортом с установленным в нем инструментом.).

Появление водяных и ветряных двигателей, мельниц, зарождение машинного производства В связи с увеличением размеров и мощности механизмов живые двигатели (животные и человек) уже не могли удовлетворить растущие потребности в механической энергии. И на смену биоэнергетике пришла механическая энергия, базирующаяся на силе воды и ветра, которая прежде всего стала использоваться для размола зерна и подачи воды. Поэтому независимо от назначения все водяные и ветряные двигатели вначале назывались мельницами.

Мельницы Ч это первые орудия труда, в которых применен принцип машинного производства, в истории мельниц мы находим все виды движущей силы: силу человека, животных, силу воды, ветра, пара,, что по истории мельниц можно изучить всю историю механики. В мельнице с самого начала, с тех пор как была создана водяная мельница, имелись все существенные элементы организма машины: механическая двигательная сила; первичный двигатель, который она приводит в действие; передаточный механизм; и, наконец, рабочая машина, захватывающая материал; все эти элементы существуют независимо друг от друга. Это не только самая точная характеристика мельницы, но и первое истинно научное определение машины, которое не потеряло своего значения и в наше время.

Ветряные мельницы, которые появилась более 2-х тысячелетий назад в Китае были вообще первыми механическими двигателями, созданным руками человека. В основе мельницы, ее рабочим механизмом, был жерновой постав, появившийся в 7 в. до н. э. и представляющий неподвижный и вращающийся жернова, поставленные один на другой.

Широкое развитие в IX-X вв. ветряные мельницы получили в арабских странах, бедных водными ресурсами. Во Франции ветряные мельницы козловой конструкции появились в X в. шатровой Ч в XIII в., а с XIV в. Голландия стала считаться страной ветряных мельниц. В нашем сельском хозяйстве ветряные мельницы (лветряки) просуществовали вплоть до 50-х гг. XX в.

Сейчас, как известно, наблюдается возрождение использования этого экологически наиболее чистого способа получения энергии, но уже на новой научно-технической основе.

Pages:     | 1 |   ...   | 6 | 7 | 8 | 9 | 10 |   ...   | 32 |    Книги по разным темам