На главную/Библиотека для студентов/
Абитуриентам и школьникам/Скачать Учебники, пособия, книги для школьников и абитуриентов/Скачать Учебники, пособия, книги для школьников и абитуриентов по математике/Решение задач по математике - задачники, пособия с решением задач и ответами/Решение задач по математике -Что делать, когда решить задачу не удается
Решение задач по математике -Что делать, когда решить задачу не удается
Скачать Учебники, пособия, книги для школьников и абитуриентов по математике/Решение задач по математике - задачники, пособия с решением задач и ответами/Решение задач по математике -Что делать, когда решить задачу не удается
Решение задач по математике -Что делать, когда решить задачу не удается
Решение задач по математике -Что делать, когда решить задачу не удается
Что делать, когда решить задачу не удается.Финкельштейн В.М.
1. Изучение задачи 7
Рекомендации 7
Первые шаги 7
Дальнейшее изучение задачи 7
Пояснения 8
Зачем нужны рекомендации? 8
Обязательно ли выполнять все рекомендации? 8
Что такое объект? 8
Как различать свойства и признаки? 8
Зачем разделять условие на части? 9
Зачем записывать все условия и все требования? 9
Как убедиться, что понято каждое слово? 11
Что такое определение? 11
Зачем заменяют термин определением? 13
Как выбирают обозначения? 14
Что такое схема? 19
Почему ОДЗ нужно определять в начале решения? 20
Разве могут быть условия задачи противоречивыми? 21
2. Поиск решения 22
Рекомендации 22
Начало поиска 22
Выбор направления поиска 22
Видоизменение задачи 23
Что делать, когда решить задачу не удается? 24
Пояснения 25
Зачем выдвигать несколько гипотез? 25
Что значит преобразовать исходные данные, найти следствие из условия 27
Приведите пример решения от начала 28
Что значит преобразовать конечный результат? 30
Приведите пример поиска решения от конца 31
Что значит решать попеременно? 33
В каком случае часть условий задачи в начале решения не используется 35
Как разделяют задачу на части? 38
Зачем вводить новую переменную? 41
Когда и какие делают вспомогательные построения? 42
Как можно изменить чертеж? 48
Что значит более общая задача? 50
Когда рассматривают частные случаи? 50
Что такое предельный случай? 52
Приведите примеры применения векторов 54
Покажите применение метода координат 55
Как решают задачи от противного? 55
Покажите решение задач методом математической индукции 59
Что значит видоизменить задачу? 62
Зачем составляют план решения? 64
3. Осуществление плана, обоснование и проверка 65
Рекомендации 65
и т.д.
Скачать