На главную/Библиотека для студентов/
Абитуриентам и школьникам/Скачать Учебники, пособия, книги для школьников и абитуриентов/Скачать Учебники, пособия, книги для школьников и абитуриентов по математике/Решение задач по математике - задачники, пособия с решением задач и ответами/Решение задач по математике - Дыбов П.Т., Осколков В.А. Задачи по математике с указаниями и решениями
Решение задач по математике - Дыбов П.Т., Осколков В.А. Задачи по математике с указаниями и решениями
Скачать Учебники, пособия, книги для школьников и абитуриентов по математике/Решение задач по математике - задачники, пособия с решением задач и ответами/Решение задач по математике - Дыбов П.Т., Осколков В.А. Задачи по математике с указаниями и решениями
Решение задач по математике - Дыбов П.Т., Осколков В.А. Задачи по математике с указаниями и решениями
Решение задач по математике - Дыбов П.Т., Осколков В.А. Задачи по математике с указаниями и решениями
Задачи по математике (с указаниями и решениями).Дыбов П.Т., Осколков В.А.
Оглавление
Глава I. Алгебраические уравнения и неравенства. Функции одной переменной
§ 1. Линейная функция. Линейные уравнения и неравенства с одной переменной 4
§ 2. Квадратичная функция. Квадратные уравнения и неравенства 10
§ 3. Обратная пропорциональность 17
§ 4. Деление многочленов. Рациональные функции. Уравнения и неравенства высших степеней . . . . 20
§ 5. Линейные системы уравнений и неравенств . . . . 28
§ 6. Системы уравнений и неравенств высших степеней 30
§ 7. Иррациональные функции, уравнения и неравенства 32
§ 8. Системы иррациональных уравнений и неравенств 37
Глава II. Показательные и логарифмические функции. Показательные и логарифмические уравнения и неравенства, системы уравнений и неравенств
§ 1. Показательные и логарифмические уравнения и системы уравнений 40
§ 2. Показательные и логарифмические неравенства и системы неравенств 50
§ 3. Разные задачи, связанные с показательной и логарифмической функциями 57
Глава III. Тригонометрия
§ 1. Преобразование тригонометрических выражений 62
§ 2. Тригонометрические функции 67
§ 3. Обратные тригонометрические функции 69
§ 4. Тригонометрические уравнения 74
§ 5. Тригонометрические неравенства 84
Глава IV. Задачи на составление уравнений и неравенств
§ 1. Задачи на движение 87
§ 2. Задачи на работу, проценты, смеси, целые числа 92
§ 3. Задачи на составление неравенств и систем неравенств. Задачи на экстремум 97
Глава V. Неопределенный интеграл. Определенный интеграл
§ 1. Простейшие неопределенные интегралы 101
§ 2. Определенный интеграл. Формула Ньютона—Лейбница. Интеграл с переменным верхним пределом 106
§ 3. Вычисление площадей плоских фигур 108
Глава VI. Числовые последовательности. Прогрессии. Предел функции. Непрерывность
§ 1. Числовые последовательности 113
§ 3. Предел функции. Непрерывность 125
Глава VII. Элементы векторной алгебры
§ 1. Линейные операции над векторами 130
§ 2. Скалярное произведение векторов 136
Глава VIII. Планиметрия
§ 1. Задачи на доказательство 143
§ 2. Задачи на построение 144
§ 3. Задачи на вычисление 145
Глава IX. Стереометрия
§ 1. Прямая. Плоскость. Многогранники 154
§ 2. Тела вращения 164
§ 3. Комбинации многогранников и тел вращения. . . 166
Глава X. Задачи с параметрами
§ 1. Задачи по алгебре 176
§ 2. Задачи по тригонометрии 179
Глава XI. Разные задачи
§ 1. Метод математической индукции. Суммирование 181
§ 2. Комбинаторика. Бином Ньютона 184
§ 3. Нестандартные уравнения, неравенства, системы уравнений и неравенств 189
§ 4. Тождественные преобразования числовых и алгебраических выражений 192
§ 5. Задачи на доказательство 194
§ 6. Возвратное уравнение 198
Ответы, указания, решения 201
Скачать