На главную/Библиотека для студентов/Математика/Материалы по высшей математике/Учебники, справочники, пособия по высшей математике/Дифференциальные уравнения/Справочник по дифференциальным уравнениям в частных производных первого порядка

Справочник по дифференциальным уравнениям в частных производных первого порядка

Справочник по дифференциальным уравнениям в частных производных первого порядка. Э. Камке

ОГЛАВЛЕНИЕ
Предисловие к русскому изданию 10
Некоторые обозначения 12
Принятые сокращения в библиографических указаниях 12
ЧАСТЬ ПЕРВАЯ
ОБЩИЕ МЕТОДЫ РЕШЕНИЯ
Глава I. Линейные и квазилинейные уравнения 13
§ 1. Введение 13
1.1. Общие понятия, обозначения и терминология 13
1.2. Замечания о решениях 14
§ 2. Линейное однородное уравнение с двумя независимыми переменными: f (х, у) р + g (х, у) q = 0
2.1. Геометрическая интерпретация 15
2.2. Замечания об интегралах и линиях уровня 17
2.3. Характеристики и интегральные поверхности 19
2.4. Решение уравнения посредством характеристик 20
2.5. Решение уравнения посредством комбинирования характеристических уравнений 21
2.6. Частный случай: р + f (х, у) q = 0
2.7. Функциональная зависимость и якобиан 26
2.8. Главный интеграл; решение задачи Коши 29
2.9. Замечания об использовании разложений в ряды 32
2.10. Методы решения 32
§ 3. Линейное однородное уравнение с n независимыми переменными: ?fvp(r))pv = 0
3.1. Определения и замечания 32
3.2. Характеристики и интегральные поверхности 33
3.3. Решение уравнения посредством комбинирования характеристических уравнений 34
3.4. Фундаментальная система интегралов; задача Коши 34
3.5. Редукция уравнения в случае, если известны частные интегралы 36
3.6. Частный случай: p + ?fv(x, y) qv = 0
3.7. Решение задачи Коши 41
3.8. Множители Якоби 42
3.9. Методы решения 43
§ 4. Общее линейное уравнение: 2 /v (г) Pv + /о (*") г = / (г) . . . . 44
4.1. Определения 44
4.2. Сведение общего линейного уравнения к однородному ... 45
4.3. Теорема существования и единственности 46
4.4. Неравенство Хаара 47
4.5. Дополнения для случая п = 2 48
§ 5. Квазилинейное уравнение: 2 /v (г. z) Р\ = ? (r. г) 49
5.1. Геометрическая интерпретация 49
5.2. Характеристики и интегральные поверхности 50
5.3. Решение уравнения посредством характеристик 51
5.4. Сведение квазилинейного уравнения к линейному однородному 54
5.5. Частный случай: р -\- 2 /v С*. У> г) Ч\ = g (х. У, г) ... . 55
5.6. Решение задачи Коши 57
5.7. Разложение в ряды 58
5.8. Методы решения 59
§ 6. Система линейных уравнений 59
6.1. Частный случай: Pv — fv(r)y v—1,.... п 59
6.2. Общая линейная система: определения и обозначения .... 61
6.3. Инволюционные системы и полные системы 62
6.4. Метод Майера для решения якобиевой системы 64
6.5. Свойства полной системы 66
6.6. Однородные системы 67
6.7. Редукция однородной системы 68
6.8. Редукция общей системы 73
6.9. Методы решения 74
§ 7. Система квазилинейных уравнений 74
7.1. Частный случай 74
7.2. Общая квазилинейная система 76
Глава II. Нелинейные уравнения с двумя независимыми переменными 78
§ 8. Общие понятия, обозначения и терминология . . 78
8.1. Геометрическая интерпретаця уравнения 78
8.2. Геометрическая интерпретация характеристик 80
8.3. Определение полосы 82
8.4. Вывод характеристической системы 82
8.5. Другие выводы характеристической системы 84
8.6. Обыкновенные и особые плоскостные элементы 87
8.7. Интегральные полосы и интегральные поверхности 88
8.8. Частный, особый, полный и общий интегралы 89
§ 9. Метод Лагранжа 90
9.1. Первые интегралы 90
9.2. Случай двух неочевидных первых интегралов 92
9.3. Случай одного неочевидного первого интеграла 95
9.4. Получение однопараметрического семейства интегралов из двух неочевидных первых интегралов 96
9.5. Получение частных интегралов из полного интеграла .... 97
9.6. Решение задачи Коши 99
§ 10. Некоторые другие методы решения 101
10.1. Нормальная задача Коши 101
10.2. Общая теорема существования. Метод характеристик Коши 103
10.3. Частный случай: р — f (х, у, г, д) 104
10.4. Представление решения степенным рядом в случае аналитических функций 106

и т.д.


Скачать

Похожие материалы

Самые популярные материалы