На главную/Библиотека для студентов/Математика/Материалы по высшей математике/Учебники, справочники, пособия по высшей математике/Практикум - Орловский Д.Г. Неопределенный интеграл

Практикум - Орловский Д.Г. Неопределенный интеграл

Неопределенный интеграл. Практикум. Орловский Д.Г.

ОГЛАВЛЕНИЕ
Предисловие 3
Глава 1. Введение в интегральное исчисление 4
§ 1.1. Таблица интегралов 4
§ 1.2. Гиперболические функции 6
§ 1.3. Дополнительная таблица интегралов II
§ 1.4. Использование свойств четности 12
Глава 2. Простейшие неопределенные интегралы 13
§ 2.1. Использование таблицы интегралов 13
§ 2.2. Линейная замена переменной 19
§ 2.3. Замена переменной 24
§ 2.4. Интегрирование по частям 76
Глава 3. Интегрирование рациональных функций 118
§ 3.1. Метод неопределенных коэффициентов 118
§ 3.2. Метод Остроградского 149
Глава 4. Интегрирование иррациональных функций 187
§ 4.1. Интегрирование простейших иррациональностей 187
§ 4.2. Интегрирование простейших квадратичных иррациональностей 195
§ 4.3. Подстановки Эйлера 238
§ 4.4. Интеграл от дифференциального бинома 255
Глава 5. Интегрирование тригонометрических функций 266
§ 5.1. Простейшие приемы интегрирования 266
§ 5.2. Использование рекуррентных соотношений 281
§ 5.3. Применение тригонометрических формул 287
§ 5.4. Интегралы вида /i?(sinx, cos x) dx 297
§ 5.5. Различные приемы интегрирования 312
Глава 6. Интегрирование различных трансцендентных функций 337
Глава 7. Разные примеры на интегрирование функций 379


Скачать

Похожие материалы

Самые популярные материалы