На главную/Библиотека для студентов/Математика/Учебник – Математика. ред. Журбенко Л.Н., Никоновой Г.А.

Учебник – Математика. ред. Журбенко Л.Н., Никоновой Г.А.

(1 vote)

Математика. Под ред. Журбенко Л.Н., Никоновой Г.А.

СОДЕРЖАНИЕ
Предисловие 3
Список используемых обозначений 5
ЧАСТЬ 1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ
Глава 1. Элементы линейной алгебры и аналитической геометрии 7
1. Линейная алгебра 7
1.1. Определители, их свойства 10
1.2. Системы линейных алгебраических уравнений, их совместность, определенность. Методы Гаусса и Крамера 13
1.3. Действия над матрицами. Матричный способ решения СЛАУ 17
2. Векторная алгебра 21
2.1. Векторы и линейные операции над ними 24
2.2. Базис в пространстве и на плоскости 27
2.3. Проекция вектора на ось и ее свойства 29
2.4. Прямоугольная система координат. Координаты вектора и точки 30
2.5. Скалярное произведение векторов 32
2.6. Векторное произведение векторов 34
2.7. Смешанное (векторно-скалярное) произведение трех векторов 36
2.8. Линейное пространство. Евклидово пространство R" 37
2.9. Линейные преобразования. Собственные значения и собственные векторы. Квадратичные формы R" 41
2.10. Применение методов алгебры в математическом моделировании 47
3. Аналитическая геометрия на плоскости и в пространстве: прямая и плоскость 52
3.1. Прямая на плоскости 54
3.2. Плоскость в пространстве 57
3.3. Прямая в пространстве. Взаимное расположение прямой и плоскости 61
4. Аналитическая геометрия на плоскости: кривые 2-го порядка 65
4.1. Общее уравнение кривой 2-го порядка. Окружность 67
4.2. Эллипс 68
4.3. Гипербола 69
4.4. Парабола 71
4.5. Преобразования параллельного переноса и поворота системы координат. Упрощение уравнений кривых 2-го порядка 72
5. Аналитическая геометрия в пространстве: поверхности 2-го порядка 76
5.1. Цилиндрические поверхности 78
5.2. Конус 2-го порядка 79
5.3. Эллипсоид 80
5.4. Гиперболоиды 81
5.5. Параболоиды 82
Глава 2. Введение в математический анализ 84
6. Функции одной переменной. Элементарные функции 84
6.1. Элементы теории множеств. Символика математической логики. Топология числовой прямой 86
6.2. Функции. Область определения. Способы задания ....88
6.3. Основные элементарные функции. Элементарные функции 90
7. Пределы функции одной переменной 91
7.1. Предел последовательности 93
7.2. Предел функции в точке 93
7.3. Бесконечно малые и бесконечно большие функции 94
7.4. Леммы о бесконечно малых 95
7.5. Основные теоремы о пределах 96
7.6. Понятие о неопределенностях. I и II замечательные пределы 98
7.7. Сравнение бесконечно малых. Эквивалентные бесконечно малые 101
8. Непрерывные функции одной переменной 103
8.1. Определения непрерывности 104
8.2. Точки разрыва 106
8.3. Свойства функций, непрерывных в т. х0 107
8.4. Свойства функций, непрерывных на [а, Ь] 108
Глава 3. Дифференциальное исчисление функции одной переменной 110
9. Дифференцируемые функции одной переменной 110
9.1. Определение производной, ее физический смысл 112
9.2. Геометрический смысл производной 113
9.3. Существование производной и непрерывность 114
9.4. Свойства операции дифференцирования 115
9.5. Производная сложной функции. Логарифмическая производная 116
9.6. Производные основных элементарных функций 117
9.7. Дифференциал 119
9.8. Производные и дифференциалы высших порядков 120
9.9. Производные параметрически заданной функции 121
10. Исследование функций и построение графиков 123
10.1. Основные теоремы дифференциального исчисления 126
10.2. Правило Лопиталя 128
10.3. Монотонность 129
10.4. Экстремумы 130
10.5. Достаточный признак экстремума, использующий вторую производную. Наименьшее и наибольшее значения функции на отрезке 132
10.6. Выпуклость, вогнутость 133
10.7. Точка перегиба 134
10.8. Асимптоты 136
10.9. Общая схема исследования функции и построение графика 138
10.10. Применение методов дифференциального исчисления в математическом моделировании 140
Глава 4. Дифференциальное исчисление функций нескольких переменных 144

и т.д.


Скачать

Похожие материалы

Самые популярные материалы