На главную/Библиотека для студентов/Абитуриентам и школьникам/Скачать Учебники, пособия, книги для школьников и абитуриентов/Скачать Учебники, пособия, книги для школьников и абитуриентов по математике/Книга для учителей математики - Лихтарников Л.М., Поволоцкий А.И. Основы математического анализа

Книга для учителей математики - Лихтарников Л.М., Поволоцкий А.И. Основы математического анализа

(1 vote)

Основы математического анализа. Книга для учителей математики. Лихтарников Л.М., Поволоцкий А.И.

Содержание
Раздел I Введение в математический анализ 5
Глава I Множество действительных чисел 5
1. Действительные числа 5
2. Модуль действительного числа 11
3. Точечные множества на числовой оси 13
Глава II Функции 17
1. Отображения множеств 17
2. Сужение. Композиция отображений 20
3. Взаимно однозначное соответствие 21
4. Общее понятие функции действительной переменной 23
5. Способы задания функций действительного переменного 25
6. Простейшая классификация функций действительного переменного 29
7. Функции натурального аргумента (последовательности) 36
8. Принцип вложенных отрезков 37
Глава III Предел 39
1. Окрестность точки. Предельная точка множества 39
2. Предел функции в точке (по Коши) 42
3. Предел функции по множеству. Предел на бесконечности 48
4. Основные теоремы о пределах 49
5. Бесконечно малые и бесконечно большие функции 54
6. Практическое отыскание пределов функций 57
7. Односторонние пределы функции 59
8. Первый замечательный предел 61
9. Предел последовательности 63
10. Предел монотонной последовательности 65
11. Определение предела функции в точке (по Гейне) 66
12. Числом 67
13. Второй замечательный предел 68
14. Сравнение бесконечно малых функций. Эквивалентные бесконечно малые 70
Глава IV Непрерывность 73
1. Приращение аргумента и функции 1 73
2. Непрерывность функции в точке 74
3. Непрерывность суммы, произведения и частного 76
4. Классификация точек разрыва функции 78
5. Непрерывность сложной функции 80
6. Теорема об обращении непрерывной функции в нуль (первая теорема Больцано-Коши) 81
7. Теорема о промежуточных значениях непрерывной функции (вторая теорема Больцано-Коши) 83
8. Обратное отображение и понятие .обратной функции 84
9. Существование и непрерывность обратной функции 86
10. Свойства функций, непрерывных на сегменте 88
11. Равномерная непрерывность функции и теорема Кантора 89
Глава V Элементарные функции 93
1. Степенная функция с натуральным показателем и ее свойства 93
2. Степенная функция с целым отрицательным показателем 94
3. Определение степени с действительным показателем и ее существование 95
4. Степенная функция с рациональным показателем и» ее свойства 100
5. Показательная функция 102
6. Существование логарифмов и логарифмическая функция 104
7. Натуральные логарифмы. Связь между логарифмами с разными основаниями 105
8. Степенная функция c иррациональным показателем 106
9. Показательно-степенная функция 107
10. Решение показательных и логарифмических уравнений 108
11. Некоторые замечательные пределы, связанные с логарифмической и показательной функциями 115
12. Непрерывность тригонометрических функций 116
13. Существование и непрерывность обратных тригонометрических функций 117
14. Решение тригонометрических уравнений 118
УПРАЖНЕНИЯ 122
Раздел II Дифференциальное исчисление 126
Глава VI Дифференцируемые функции. Производная 127
1. Скорость 127
2. Дифференцируемость и производная 128
3. Непрерывность дифференцируемой функции 131
4. Понятие касательной. Касательная к график^ дифференцируемой функции 132
5. Дифференцирование суммы, произведения и частного 135
6. Дифференцирование сложной функции 137
7. Дифференцирование обратной функции 137
8. Производные основных элементарных функций 138
9. Производные высших порядков. Механический смысл второй производной 142
10. Кривые заданные параметрически 144
11. Касательная к кривой Жордана 148
Глава VII Дифференциал 149
1. Дифференциал и его связь с производной 149
2. Геометрический и механический смысл дифференциала 150
3. Дифференциал суммы, произведения и частного 151
4. Дифференциал сложной функции 152
5. Дифференциалы высших порядков 153
Глава VIII Основные свойства дифференцируемых функций и их применения 155
1. Основные теоремы о дифференцируемых функциях 155
2. Условие постоянства функции на промежутке 159
3. Возрастание и убывание функции в точке и на промежутке 159
4. Понятие максимума и минимума 162
4.1. Необходимое условие экстремума 163
4.2. Достаточные условия максимума и минимума 163
4.3. Нахождение наибольших и наименьших значений 167
5. Выпуклые функции. Точки перегиба 168
6. Применение дифференциального исчисления к нахождению пределов (правило Лопиталя) 172
7. Асимптоты 176
8. Исследование функций. Построение графиков 178
9. УПРАЖНЕНИЯ ....181
Раздел III Интегральное исчисление 184
Глава IX Неопределенный интеграл 185
1. Задача восстановления функции по ее производной 185
2. Первообразная функция и неопределенный интеграл 185

и т.д.


Скачать

Похожие материалы

Самые популярные материалы