Содержание
Введение 3
Задание 1. Деловая графика 4
Постановка задачи 4
Описание метода решения 4
Вывод 5
Задание 2. Трёхмерные преобразования 6
Постановка задачи 6
Описание метода решения 6
Листинг кода 8
Вывод 9
Задание 3. Проекции 10
Постановка задачи 10
Описание метода решения 10
Листинг кода 12
Вывод 13
Заключение 14
Список использованной литературы 15
Введение
Машинная графика в настоящее время уже вполне сформировалась как наука. Существует аппаратное и программное обеспечение для получения разнообразных изображений - от простых чертежей до реалистичных образов естественных объектов. Машинная графика используется почти во всех научных и инженерных дисциплинах для наглядности восприятия и передачи информации. Знание её основ в наше время необходимо любому ученому или инженеру. Машинная графика властно вторгается в бизнес, медицину, рекламу, индустрию развлечений. Применение во время деловых совещаний демонстрационных слайдов, подготовленных методами машинной графики и другими средствам автоматизации конторского труда, считается нормой. В медицине становится обычным получение трехмерных изображений внутренних органов по данным компьютерных томографов. В наши дни телевидение и другие рекламные предприятия часто прибегают к услугам машинной графики и компьютерной мультипликации. Использование машинной графики в индустрии развлечений охватывает такие несхожие области как видеоигры и полнометражные художественные фильмы.
В рамках данной работы будут рассмотрены принципы создания и применения компьютерных трёхмерных изображений. Для этого приходится применять математический аппарат и техники программирования.
Задание 1. Деловая графика
Постановка задачи
Требуется составить в MS Excel электронную таблицу любых статистических данных и построить диаграмму. Тип диаграммы для 2 варианта – поверхность.
Описание метода решения
Табличный процессор MS Excel – мощное средство для работы с электронными таблицами, пригодное для применения в профессиональных и бытовых целях. В этой программе имеется большое количество средств визуализации табличной информации. Мы рассмотрим один из способов – построение поверхности. В этом случае в трёх координатах строится поверхность, которая отображает числовые данные A(i,j) в конкретной строке i и столбце j таблицы как зависимость координаты z от заданных двух (x,y), то есть
z(x,y) = F(x,y) = A(i,j)
Кроме этого, используется отображение различных диапазонов значений различными цветами. Дла расшифровки диапазонов для каждого цвета справа от изображения поверхности расположена легенда
В качестве отображаемой поверхности использована функция
F(x,y) = cos(0.2x*0.1y),
которая реализована в соттветствующей таблице, с использованием ссылок Excel на ячейки.
Excel позволяет масштабировать, поворачивать, использовать перспективу для полученных изображений. Эти параметры изменяются с помощью мышки или в диалоговоых окнах. Используя эти настройки, полученная поверхность была приведена к наиболее удобному для восприятия информации виду.
Вывод
Используя стандартные возможности программы Excel, можно визуализировать табличные данные, и получить красивые и наглядные графики и диаграммы. Один из видов трехмерной диаграммы – поверхность, и была построена в рамках этой работы.
Задание 2. Трёхмерные преобразования
Постановка задачи
Требуется составить программу, реализующую трёхмерные преобразования с фигурой. Для варианта 2 это перенос параллелограмма по осям X,Y,Z. Фигура должна отображаться в контурном виде без удаления невидимых линий и уметь вращаться вокруг произвольной оси. Управление должно осуществляться с помощью клавиш 1-9 на цифровой клавиатуре
Описание метода решения
В памяти компьютера хранится модель фигуры – параллелограмма, в виде 12 рёбер. Каждое ребро задано в виде 6 чисел – координат x,y,z начала и конца ребра. Координаты заданы относительно геометрического центра фигуры.
Фигура находится в глобальной трёхмерной системе координат. Оси глобальной системы координат X,Y,Z направлены соответственно вправо, вверх и вперёд относительно человека, сидящёго за монитором. Центр экрана имеет координаты (0,0,0). Также хранится значение угла альфа – угла поворота фигуры относительно вертикальной оси (Y). При угле альфа равном 2рn, где n – целое число, направлнение осей глобальной системы координат, и системы в которой задана фигура, совпадают. Таким образом, зная положение вершин фигуры в её собственной системе координат, и угол альфа, можно получить их положение в глобальной системе координат:
xг = xф*cos(г) + zф*sin(г) + x0