Содержание


Задача 6 3

Задача 18 4

Задача 21 4

Задача 25 5

Задача 30 7

Задача 41 7


Задача 6

Определить силу давления на коническую крышку горизонтального цилиндрического сосуда диаметром D1=1500 мм, заполненного керосином. Показания манометра в точке его присоединения – рм=0,4 МПА (абс). Показать на чертеже вертикальную и горизонтальную составляющие, а также полную силу давления. а=900 мм.

Решение:

Пусть жидкость заполняет резервуар, правая стенка которого представляет собой цилиндрическую криволинейную поверхность АВС (рис.1), простирающуюся в направлении читателя на ширину b. Восстановим из точки А перпендикуляр АО к свободной поверхности жидкости. Объем жидкости в отсеке АОСВ находится в равновесии. Это значит, что силы, действующие на поверхности выделенного объема V, и силы веса взаимно уравновешиваются.


Рис. 1. Схема гидростатического давления на цилиндрическую поверхность


На рисунке показаны составляющие силы реакции стенки, которые равны по модулю, но противоположны по направлению соответствующим компонентам силы давления

Cила гидростатического давления на площадь Sx по направлению оси Ох равна Fx = г Sx hc , где hc – высота центра давления, который находится по формуле

,

Площадь боковой поверхности конуса .



Задача 18

При внезапном расширении трубопровода скорость жидкости в трубе большего диаметра равна v=2,5 м/с. Отношение диаметров труб D:d=2. Определить h – разность показаний пьезометров.

Решение:


Задача 21

Определить время закрытия задвижки, установленной на свободном конце стального водопровода диаметром d=150 мм, длиной l=1700 м, с толщиной стенки d=8 мм., при условии, чтобы максимальное повышение давления в водопроводе было в три раза меньше, чем при мгновенном закрытии задвижки. Через сколько времени после мгновенного закрытия задвижки повышение давления распространится до сечения, находящегося на расстоянии 0,7l от задвижки?

Решение:

Скачок давления распространяется по трубе в виде упругой волны со скоростью u , определяемой коэффициентом сжимаемости и плотностью жидкости, модулем упругости материала трубы, ее диаметром и толщиной стенок. Для потоков воды в стальных и чугунных трубах u »” 1000 – 1350 м/с.

Если жидкость плотности r? течет со скоростью v в трубопроводе с площадью сечения S , а задвижка в конце трубопровода закрывается за время (D?t)з , то возникает увеличение давления D?p . В прилегающем к задвижке слое жидкости длиной D?l= u(D?t)з и массой m=r?SD?l, теряется импульс D?(mv)=r?SD?lv. По второму закону Ньютона изменение импульса определяется величиной действующей силы: D?(mv)/ (D?t)з = F. Учитывая, что F =D?pS , получаем выражение для величины скачка давления:

D?p = r?vu (1)

Образующееся при гидравлическом ударе повышение давления распространяется против течения жидкости и через время L/u ( L -длина трубопровода) достигает резервуара. Здесь давление падает, и это падение давления передается обратно к задвижке с той же скоростью в виде отраженной волны (волна понижения). Циклы повышений и понижений давления чередуются через промежутки времени 2L/u , пока этот колебательный процесс не затухнет из-за потерь энергии на трение и деформацию стенок.

Формула (1) действительна лишь в случае, когда время закрытия запорного устройства сравнительно мало, т.е. при условии (D?t)з << 2L/u. При (D?t)з > 2L/u отраженная волна придет к запорному устройству раньше, чем задвижка закроется, и повышение давления в трубопроводе уменьшится. В этом случае величина скачка давления:

Задача 25

Определить производительность и напор насоса (рабочую точку) при подаче воды в открытый резервуар из колодца на геодезическую высоту Нг = 6 м по трубопроводу диаметром d = 250 мм, длиной l = 40 м, с коэффициентом гидравлического трения и эквивалентной длинной местных сопротивлений lэкв = 8 м. Как изменится подача и напор насоса, если частота вращения рабочего колеса уменьшится на 10%?

Решение:

Предположим, что насос развивает максимальную производительность м3/с. При этом насос подает воду в открытый резервуар из колодца на геодезическую высоту Нг = 6 м по трубопроводу диаметром d = 250 мм, длиной l = 40 м, с коэффициентом гидравлического трения и эквивалентной длинной местных сопротивлений lэкв = 8 м.

Максимальный напор насоса найдется из соотношения:

.

Выразим из этого соотношения максимальный напор и подставим численные значения:

Н.