Глава 5. Непараметрические тесты. Команда Nonparametric tests.

Непараметрические тесты предназначены преимущественно для проверки статистических гипотез методами, не связанными с видом распределения совокупности. В частности, применение этих методов не требует предположения о нормальности распределения, которое необходимо для правомерного использования одномерного дисперсионного анализа, процедуры T-TEST, при определении значимости корреляций и т.д. К средствам непараметрического анализа относятся в числе прочих методов тест хи-квадрат, служащий для проверки взаимосвязи между номинальными переменными и коэффициенты ранговой корреляции, которым мы уже уделили некоторое внимание.

Непараметрические тесты не ограничиваются таким исследованием связи пар переменных; они включают множество других методов, реализованных командой синтаксиса NPAR TESTS. В меню SPSS непараметрические тесты реализует команда Nonparametric tests c множеством подкоманд.

Процедура NPAR TESTS включает большую группу критериев для проверки:

- соответствия распределения выборочной совокупности заданному распределению;

- случайного характера выборки объектов;

- совпадения распределений в различных группах

- совпадения распределений в связанных выборках (например, результатов повторных измерений).

Во всех критериях допускаются асимптотические, точные оценки значимости (EXACT) и оценки их методом Монте-Карло.

5.1. Одновыборочные тесты

Эти тесты служат для проверки соответствия распределения выборки заданному.

5.1.1. Тест Хи-квадрат

Критерий Хи-квадрат основан на статистике

,

где - ожидаемая частота i-го значения переменной, Ni расчетная. Теоретическое распределение этой статистики при больших N совпадает с распределением Хи-квадрат. Число степеней свободы теоретического распределения полагается равным k-1, где k - число значений исследуемой переменной. Эмпирическое правило говорит о том, что некорректно применять критерий, если ожидаемые частоты меньше 5, поскольку его распределение в этом случае не будет близко к теоретическому. Но использование точных методов вычисления значимости (метод Монте-Карло) позволяет избежать этого ограничения.

Пример. Пусть, согласно статистическим данным, 30% трудоспособного населения имеют возраст до 30 лет, 30% - от 30 до 40 лет и 40% свыше 40 лет. Соответствует ли выборочное распределение признака "возраст" в обследовании "Курильские острова" распределению возраста в генеральной совокупности?

RECODE v9 (1 THR 30 =1)(31 THR 40 =2)(41 THRU HI =3) INTO w9.

NPAR TESTS /CHISQUARE = W9 /EXPECTED 3 3 4.

Подкоманда /CHISQUARE задает тестируемую переменную; в подкоманде /EXPECTED задаем через пробел ожидаемые пропорции распределения.

Выполнение этих команд позволяет получить значение критерия и оценить степень соответствия нашей выборки распределению генеральной совокупности (табл. 5.1, 5.2).

Таблица 5.1. Наблюдаемые и ожидаемые частоты


Observed N

Expected N

Residual

1

175

210

-35

2

225

210

15

3

300

280

20

Total

700


Таблица 5.2. Статистика хи-квадрат


W9

Chi-Square

8.333

Df

2

Asymp. Sig.

0.016


Анализируя таблицу 5.1, уже по отклонениям расчетных значений от ожидаемых (см. столбец RESIDUAL), видим, что эмпирическое распределение сильно отличается от теоретического. Достаточно высокое значение критерия (Chi-Square =8.333, таблица 5.2) мало информативно. Ответ о совпадении нашего распределения с теоретическим заключен в анализе наблюдаемого уровня значимости. Его малая величина (Asymp. Sig.=0.016) показывает, что полученные отклонения значимы: вероятность получить большие значения Хи-квадрат равна 1.6%, гипотеза о соответствии выборки указанной генеральной совокупности может быть отвергнута на уровне значимости 5%.

Таким образом, для данного случая тест показал существенное различие теоретического и эмпирического распределений.

Приведем пример применения метода статистического моделирования Монте-Карло. В этом примере производится 100000 экспериментов по моделированию выборки из генеральной совокупности с заданными вероятностями (p1=0.3, p2=0.3, p3=0.4):

NPAR TEST /CHISQUARE=w9 /EXPECTED=3 3 4 /METHOD=MC CIN(99) SAMPLES(100000).

Естественно при такой большой выборке был получен тот же