СОДЕРЖАНИЕ


СОДЕРЖАНИЕ 2

ВВЕДЕНИЕ 3

1. ОБЩАЯ ХАРАКТЕРИСТИКА ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ КОРПУСНЫХ ДЕТАЛЕЙ 4

2. МЕТОДЫ ИЗГОТОВЛЕНИЯ КОРПУСНЫХ ДЕТАЛЕЙ 10

ЗАКЛЮЧЕНИЕ 13

ЗАДАЧА 14

СПИСОК ЛИТЕРАТУРЫ 16

ВВЕДЕНИЕ


С целью обеспечения новых потребностей народного хозяйства при создании новых и приборных устройств широко используют новые конструкционные материалы: сверхчистые, сверхтвердые, жаропрочные, порошковые, полимерные и другие материалы, позволяющие резко повысить технический уровень, надежность, снизить затраты на производство. Обработка этих материалов связана со значительными технологическими трудностями.

Развитие и совершенствование любого производства в настоящее время связано также и с его автоматизацией, созданием робототехнических комплексов, широким использованием вычислительной техники, применение станков с числовым программным управлением. Эти элементы составляют базу, на которой создаются автоматизированные системы управления, становятся возможными оптимизация технологических процессов и режимов обработки, создание гибких автоматизированных производств.

Решение таких задач возможно только высококвалифицированными инженерами, в деятельности которых применение на практике технологических наук имеет очень большое значение. При создании конструкции различных приборных устройств инженер должен обеспечивать определенные их технические и эксплуатационные характеристики и надежность в работе, учитывать особенности технологических методов обработки и сборки, а также экономическую целесообразность изготовления избранной конструкции.

Цель работы – рассмотреть технологию изготовления корпусных деталей.

Задачи работы – дать общую характеристику изготовлению корпусных деталей; рассмотреть основные методы изготовления корпусных деталей.

1. ОБЩАЯ ХАРАКТЕРИСТИКА ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ КОРПУСНЫХ ДЕТАЛЕЙ


Для изготовления корпуса можно применить полиформальдегид стабилизированный который обладает следующими качествами: высокие антифрикционные и физико-механические свойства, хорошие электроизоляционные свойства, стабильные при увеличении влажности. Для изготовления данного корпуса необходимо использовать литье под давлением и экструзию.

Требования к конструкции деталей из пластмассы. Конфигурация детали, получаемой литьем или прессованием, не должна препятствовать свободному течению массы при формовании. При разработке конструкции детали следует максимально упрощать ее конфигурацию и обращать основное внимание на ее расположение в форме и на расположение литника. Если конфигурацию детали упростить нельзя, то ее необходимо расчленить на более простые, сопрягающиеся между собой элементы. На допустимые размеры детали прежде всего влияет текучесть прессматериала. Особенно это проявляется у тер­мореактивных прессматериалов.

Ответственные или сопрягаемые участки деталей не должны располагаться в плоскости разъема формы, так как на точность размеров детали влияет вели­чина облоя. Следует учитывать, что в пресс-формах прямого или литьевого прессо­вания облой может располагаться по всему контуру изделия, а при литьевом прессовании и литье под давлением требуется дополнительная зачистка места рас­положения литника. При правильном подборе навески материала облой по тол­щине детали не превышает 0,3 мм.

Большая точность деталей обеспечивается при использовании метода литья под давлением. Для увеличения точности деталей применяют формы повышенной жесткости, а также жесткие механизмы смыкания машин.

Для беспрепятственного удаления изделий из формы необходимы технологи­ческие уклоны на внешних и внутренних поверхностях детали, параллельных направлениям раскрытия форм или совпадающих с направлением извлечения из детали формующих элементов. Технологические уклоны не делают на плоских монолитных деталях толщиной 5-6 мм и менее. Уклон внутренних поверхностей и отверстий деталей должен быть больше уклона наружных поверхностей. Реко­мендуются следующие углы уклона: наружные поверхности от 15' до 1°, внутрен­ние поверхности от 30' до 2°, отверстия глубиной до 1,5 d от 15 до 45'; ребра жест­кости и выступы от 2 до 10°. Уклоны на деталях из термореактивных материалов, получаемых литьем под давлением, должны выбираться по величине больше, чем при литье под давлением термопластичных материалов.

Толщина стенки детали определяется ее длиной, текучестью материала, механической прочностью, требуемой конфигурацией элемента детали, характеристикой оборудования и режимом переработки. Толщина сплошных сечений из реактопластов должна быть не выше 10-12 мм. Толщину стенок можно уменьшить применением ребер жесткости или приданием стенкам рацио­нальных профилей. Для фенопластов не рекомендуется применять стенки тол­щиной менее 1,5 мм. Разница в толщине стенок не должна превышать 30° наи­меньшей толщины стенки.

Для изготовления тонкостенных изделий при литье термопластов необхо­димо применять термостатирование форм. Изготовление изделий из поликарбо­ната, полиформальдегида, его сополимера и полиамидов также требует термостатирования формы, а также предварительного подсушивания материала для улуч­шения свойств изделий.

Переходы от большего сечения детали к меньшему выполняются при помощи радиусов закругления или уклонов. Торцы деталей для упроч­нения выполняют в виде непрерывных буртиков по всему контуру детали. Толщина буртиков обычно не пре­вышает 1,5-2 толщин стенки. Уве­личение жесткости деталей достигается ребрами, которые не должны быть толще стенки, к которой они примы­кают. Толщина ребер составляет 0,6-0,8 толщины стенки. Ребра

 

html>