ГОТОВЫЕ ДИПЛОМНЫЕ РАБОТЫ, КУРСОВЫЕ РАБОТЫ, ДИССЕРТАЦИИ И РЕФЕРАТЫ
Современные представления о строении Вселенной | |
Автор | www.zaochnik.com |
Вуз (город) | Москва |
Количество страниц | 16 |
Год сдачи | 2006 |
Стоимость (руб.) | 500 |
Содержание | Введение………………………………………………………………..3 Наблюдаемая Вселенная………………………………………………4 Возможные формы Вселенной………………………………………..7 Представление возможных форм Вселенной………………………..10 Заключение…………………………………………………………….16 Литература……………………………………………………………..17 |
Список литературы | 1. «Наука и жизнь» №8, 2002г. 2. Подобед В.В., Нестеров В.В. \"Общая астрометрия\", 3-е изд., \"Наука\", М., 1999. 3. Академик Н.С. Кардашёв статья «Новые открытия астрофизики». 21.02.2002 |
Выдержка из работы | Введение. В древности люди полагали, что живут на обширной плоской поверхности, хотя и покрытой кое-где горами и впадинами. Это убеждение сохранялось на протяжении многих тысяч лет, пока Аристотель в IV веке до н. э. не заметил, что уходящее в море судно пропадает из виду не потому, что по мере удаления уменьшается до недоступных глазу размеров. Напротив, сначала исчезает корпус корабля, потом паруса и, наконец, мачты. Это привело его к заключению, что Земля должна быть круглой. За прошедшие тысячелетия сделано множество открытий, накоплен колоссальный опыт. И тем не менее до сих пор остаются без ответа фундаментальные вопросы: конечна или бесконечна Вселенная, внутри которой мы обитаем, и какова ее форма? Последние наблюдения астрономов и исследования математиков показывают, что форму нашей Вселенной следует искать среди восемнадцати так называемых трехмерных ориентируемых евклидовых многообразий, причем претендовать на нее могут только десять. Наблюдаемая Вселенная. Любые умозаключения о возможной форме нашей Вселенной должны опираться на реальные факты, полученные из астрономических наблюдений. Без этого даже самые красивые и правдоподобные гипотезы обречены на неудачу. Поэтому посмотрим, что говорят о Вселенной результаты наблюдений. Прежде всего, заметим, что, в каком бы месте Вселенной мы ни находились, вокруг любой ее точки можно очертить сферу произвольного размера, содержащую внутри пространство Вселенной. Такое несколько искусственное построение говорит космологам, что пространство Вселенной представляет собой трехмерное многообразие (3-многообразие). Сразу же возникает вопрос: а какое именно многообразие представляет нашу Вселенную? Математики давно установили, что их так много, что полного списка до сих пор не существует. Многолетние наблюдения показали, что Вселенная обладает рядом физических свойств, которые резко сокращают число возможных претендентов на ее форму. И одно из главных таких свойств топологии Вселенной - ее кривизна. Согласно принятой на сегодняшний день концепции, примерно через 300 тысяч лет после Большого взрыва температура Вселенной упала до уровня, достаточного для объединения электронов и протонов в первые атомы. Когда это произошло, излучение, которое вначале рассеивалось заряженными частицами, внезапно получило возможность беспрепятственно проходить через расширяющуюся Вселенную. Это известное ныне как космическое микроволновое фоновое, или реликтовое, излучение удивительно однородно и обнаруживает только очень слабые отклонения (флуктуации) интенсивности от среднего значения. Такая однородность может быть только во Вселенной, кривизна которой всюду постоянна. Постоянство кривизны означает, что пространство Вселенной имеет одну из трех возможных геометрий: плоскую евклидову сферическую с положительной кривизной или гиперболическую с отрицательной. Эти геометрии обладают совершенно разными свойствами. Так, например, в евклидовой геометрии сумма углов треугольника равна точно 180 градусам. В сферической и гиперболической геометриях это не так. Если на сфере взять три точки и провести между ними прямые, то сумма углов между ними составит больше 180 градусов (вплоть до 360). В гиперболической же геометрии эта сумма меньше 180 градусов. Имеются и другие кардинальные отличия. Так какую же геометрию для нашей Вселенной выбрать: евклидову, сферическую или гиперболическую? Немецкий математик Карл Фридрих Гаусс еще в первой половине XIX столетия понимал, что реальное пространство окружающего мира может быть и неевклидовым. Проводя многолетние геодезические работы в Ганноверском королевстве, Гаусс задался целью с помощью прямых измерений исследовать геометрические свойства физического пространства. Для этого он выбрал три удаленные одна от другой горные вершины - Хохенгаген, Инзельберг и Броккен. Стоя на одной из этих вершин, он направлял отраженные зеркалами солнечные лучи на две другие и измерял углы между сторонами огромного светового треугольника. Тем самым он пытался ответить на вопрос: искривляются ли траектории световых лучей, проходящих над сферическим пространством Земли? (Кстати, примерно в это же время российский математик, ректор Казанского университета Николай Иванович Лобачевский предложил экспериментально исследовать вопрос о геометрии физического пространства, используя звездный треугольник.) Если бы Гаусс обнаружил, что сумма углов светового треугольника отличается от 180 градусов, то последовал бы вывод, что стороны треугольника искривлены и реальное физическое пространство неевклидово. Однако в пределах ошибки измерений сумма углов "проверочного треугольника Броккен - Хохенгаген - Инзельберг" составляла ровно 180 градусов. Итак, в малых (по астрономическим меркам) масштабах Вселенная предстает как евклидова (хотя, конечно, экстраполировать выводы Гаусса на всю Вселенную нельзя). Недавние исследования, проведенные с помощью высотных аэростатов, поднятых над Антарктидой, также подтверждают этот вывод. При измерении углового спектра мощности реликтового излучения был зарегистрирован пик, который, как полагают исследователи, может быть объяснен только существованием холодной черной материи - относительно больших, медленно движущихся объектов - именно в евклидовой Вселенной. Другие исследования также подтверждают этот вывод, что резко сокращает количество вероятных претендентов на возможную форму Вселенной. Еще в тридцатых годах XX столетия математики доказали, что существует только 18 различных евклидовых трехмерных многообразий и, следовательно, только 18 возможных форм Вселенной вместо их бесконечного числа. Понимание свойств этих многообразий помогает экспериментально определить истинную форму Вселенной, так как целенаправленный поиск всегда эффективнее поиска вслепую. Однако число возможных форм Вселенной можно сократить еще. Действительно, среди 18 евклидовых 3-многообразий имеется 10 ориентируемых и 8 неориентируемых. Поясним, что представляет собой понятие ориентируемости. Для этого рассмотрим интересную двухмерную поверхность - лист Мёбиуса. Его можно получить из прямоугольной полоски бумаги, перекрученной один раз и склеенной концами. Теперь возьмем на листе Мёбиуса точку а, проведем к ней нормаль (перпендикуляр), а вокруг нормали начертим небольшую окружность с направлением против часовой стрелки, если смотреть из конца нормали. Начнем перемещать точку вместе с нормалью и направленной окружностью по листу Мёбиуса. Когда точка обойдет весь лист и вернется в исходное положение (зрительно она будет на другой стороне листа, но в геометрии поверхность толщины не имеет), направление нормали изменится на обратное, а направление окружности - на противоположное. Такие траектории называются путями, обращающими ориентацию. А поверхности, имеющие их, называют неориентируемыми или односторонними. Поверхности же, на которых не существует обращающих ориентацию замкнутых путей, например сфера, тор и неперекрученная лента, называют ориентируемыми или двухсторонними. Заметим кстати, что лист Мёбиуса представляет собой евклидово неориентируемое двухмерное многообразие. Если допустить, что наша Вселенная - неориентируемое многообразие, то физически это означало бы следующее. Если мы полетим с Земли вдоль замкнутой петли, обращающей ориентацию, то, конечно, вернемся домой, но окажемся в зеркальной копии Земли. Мы не заметим в себе никаких изменений, но по отношению к нам у остальных жителей Земли сердце окажется справа, все часы пойдут против часовой стрелки, а тексты предстанут в зеркальном отображении. Маловероятно, что мы живем в таком мире. Космологи полагают, что если бы наша Вселенная была неориентируемой, то происходило бы излучение энергии из пограничных зон, в которых взаимодействуют материя и антиматерия. Однако ничего подобного никогда не наблюдалось, хотя теоретически и можно предположить, что подобные зоны существуют за пределами области Вселенной, доступной нашему взгляду. Поэтому резонно исключить из рассмотрения восемь неориентируемых многообразий и ограничить возможные формы нашей Вселенной десятью ориентируемыми евклидовыми трехмерными многообразиями. Возможные формы Вселенной. Трехмерные многообразия в четырехмерном пространстве необычайно трудны для наглядного представления. Однако можно попытаться представить себе их структуру, если применить подход, используемый в топологии для визуализации двухмерных многообразий (2-многообразий) в нашем трехмерном пространстве. Все объекты в нем считаются как бы сделанными из какого-то прочного эластичного материала вроде резины, допускающего любые растяжения и искривления, но без разрывов, складок и склеек. В топологии фигуры, которые можно с помощью таких деформаций преобразовывать одну в другую, называют гомеоморфными; они имеют одинаковую внутреннюю геометрию. Поэтому с точки зрения топологии бублик (тор) и обычная чашка с ручкой - одно и то же. А вот футбольный мяч перевести в бублик невозможно. Эти поверхности топологически различны, то есть имеют различные внутренние геометрические свойства. Однако если на сфере вырезать круглую дырку и приделать к ней одну ручку, то получившаяся фигура уже будет гомеоморфна тору. Существует множество поверхностей, которые топологически отличны от тора и сферы. Например, добавив к тору ручку, подобную той, что мы видим у чашки, мы получим новую дырку, а значит, и новую фигуру. Тор с ручкой будет гомеоморфен фигуре, напоминающей крендель, которая в свою очередь гомеоморфна сфере с двумя ручками. Добавление каждой новой ручки создает еще одну дырку, а значит, и другую поверхность. Таким способом можно получать бесконечное их количество. |