ГОТОВЫЕ ДИПЛОМНЫЕ РАБОТЫ, КУРСОВЫЕ РАБОТЫ, ДИССЕРТАЦИИ И РЕФЕРАТЫ

1. Несобственные интегралы первого и второго рода. Критерии Коши сходимости несобственного интеграла. 2. Абсолютно и условно сходящиеся несобственные интег

Автор таня
Вуз (город) Брест
Количество страниц 15
Год сдачи 2007
Стоимость (руб.) 500
Содержание При введении понятия определенного интеграла вида предполагалось, что выполняются следующие условия:
1. пределы интегрирования и являются конечными;
2. подынтегральная функция ограничена на отрезке .
В данном случае определенный интеграл называется собственным.
Другими словами, определенный интеграл был введен для ограниченных на отрезке функций.
Естественно распространить это понятие на случай бесконечных промежутков и бесконечно больших функций.
Если хотя бы одно из условий 1.- 2. не выполняется, то интеграл называется несобственным.
В данной работе рассмотрим несобственные интегралы по неограниченному промежутку и от неограниченной функции и методы исследования их на сходимость.
Найдем условия сходимости и расходимости несобственного интеграла

Подынтегральная функция терпит бесконечный разрыв при .

Таким образом:
a) если , то
b) если то .
Если , то .
Вывод: данный интеграл сходится при и расходится при .
Пример 2.
Исследовать при каких значениях сходится несобственный интеграл
.
Если , то

Следовательно, если , то несобственный интеграл расходится.
Если то

Этот предел будет бесконечным при или ; он будет равен постоянной при или . Итак данный интеграл сходится при
Пример 3.
Исследовать при каких значениях сходится несобственный интеграл
.
Находим .
Данный предел будет бесконечным при или ; он будет равен при или .
Если , то , следовательно, при интеграл расходится.
Список литературы 1. Ильин В.А., Позняк Э.Г. Основы математического анализа. ч.1. –М., Наука, 1980.
2. Кудрявцев Л.Д. Краткий курс математического анализа. –М., Наука, 1989.
3. Зорич В.А. Математический анализ.Ч.1.- М., Наука, 1984.
4. Гусак А.А., Гусак Г.М., Ьричикова Е.А. Справочник по высшей математике.- Мн., ТетраСистемс, 2004.
Выдержка из работы При введении понятия определенного интеграла вида предполагалось, что выполняются следующие условия:
1. пределы интегрирования и являются конечными;
2. подынтегральная функция ограничена на отрезке .
В данном случае определенный интеграл называется собственным.
Другими словами, определенный интеграл был введен для ограниченных на отрезке функций.
Естественно распространить это понятие на случай бесконечных промежутков и бесконечно больших функций.
Если хотя бы одно из условий 1.- 2. не выполняется, то интеграл называется несобственным.
В данной работе рассмотрим несобственные интегралы по неограниченному промежутку и от неограниченной функции и методы исследования их на сходимость.
Найдем условия сходимости и расходимости несобственного интеграла

Подынтегральная функция терпит бесконечный разрыв при .

Таким образом:
a) если , то
b) если то .
Если , то .
Вывод: данный интеграл сходится при и расходится при .
Пример 2.
Исследовать при каких значениях сходится несобственный интеграл
.
Если , то

Следовательно, если , то несобственный интеграл расходится.
Если то

Этот предел будет бесконечным при или ; он будет равен постоянной при или . Итак данный интеграл сходится при
Пример 3.
Исследовать при каких значениях сходится несобственный интеграл
.
Находим .
Данный предел будет бесконечным при или ; он будет равен при или .
Если , то , следовательно, при интеграл расходится.