ГОТОВЫЕ ДИПЛОМНЫЕ РАБОТЫ, КУРСОВЫЕ РАБОТЫ, ДИССЕРТАЦИИ И РЕФЕРАТЫ

Гиперболические функции

Автор ivaldemar
Вуз (город) УГПИ г.Уссурийск
Количество страниц 21
Год сдачи 2006
Стоимость (руб.) 700
Содержание 1. Введение
2. Гиперболические функции
a. Уравнение гиперболы, отнесённой к осям
b. Определение и основные свойства
гиперболических функций
c. Формулы сложения
3.Заключение
4.Список использованной литературы
Список литературы 1.Шерватов В.Г. Гиперболические функции. Государственное издательство технико – теоретической литературы.М.1954.
Выдержка из работы Всякая прямая, проходящая через центр гиперболы называется диаметром гиперболы. Диаметр гиперболы, делящий пополам все хорды данного направления, называют сопряжённым этим хордам, хорды называют сопряжёнными этому диаметру, делящему их пополам. Радиусом гиперболы будем называть отрезок диаметра, идущий от центра гиперболы до точки пересечения диаметра с гиперболой.
Рассмотрим основные свойства гиперболы (без доказательства):
1. Отрезок касательной к гиперболе, заключённый между асимптотами кривой, делится в точке касания пополам (чертёж 2).