Упражнения

1. Прочитайте статью Хейеса в сборнике [Brachman and Levesque, 1985]. Как вы думаете, можно ли считать фреймы не более чем средством реализации подмножества логики предикатов, или они позволяют смоделировать экстралогические свойства, присущие человеку, формулирующему суждения?

2. Неоднозначность, которую мы обнаружили в "проблеме Никсона", можно распространить каскадно и получить еще более замысловатые примеры. Один из них взят из работы [Touretzky et al., 1987] (рис. 6.10). Познакомьтесь с этой работой, а затем ответьте на следующие вопросы.

I) К какому заключению придет доверчивый резонер, рассуждая об отношении квакера-ре спубликанца к армии?

II) К какому заключению придет резонер-скептик?

3. Примеры сетей с наследованием, представленные на рис. 6.11 и 6.12, также взяты из работы [Touretzky et a/., 1987]. На этих рисунках представлены две топологически

идентичные сети, которые отличаются только маркировкой узлов. На рис. 6.11 показано, что королевские слоны являются исключениями, поскольку не имеют серой окраски, а на рис. 6.12 показано, что капелланы являются исключениями, поскольку это мужчины, не склонные к употреблению пива.

Рис. 6.10. Сеть с наследованием, в которой имеется каскад неоднозачностей

I) Резонер Турецкого должен был бы заключить, что в обоих случаях возможно несколько интерпретаций. Согласны ли вы с таким заключением или нет и по какой причине?

II) Сандуол полагает, что корректная интерпретация сети на рис. 6.11 состоит в том, что прямой путь от узла королевский слон к узлу серые животные должен иметь более высокий приоритет, чем непрямой путь через узел слон [Sandewall, 1986]. А что вам подсказывает ваша интуиция?

III) Днализируя сеть, представленную на рис. 6.12, Турецкий пришел к заключению, что изменение маркировки узлов сети с одной и той же топологией меняет и наше интуитивное предположение о распространении наследуемых свойств. Заключение о том, что корабельный капеллан не является любителем пива (как на том настаивает Сандуол), является менее обоснованным, чем в случае со слонами. В пользу такого заключения Турецкий приводит следующие аргументы.

  • Ни капелланы, ни моряки не могут рассматриваться как типичные мужчины, причем обе категории очень сильно отличаются друг от друга. Поэтому сделать какое-либо заключение о свойствах корабельного капеллана очень сложно.
  • Хотя нам и известно, что капелланы — трезвенники, мы ничего не знаем о том, насколько распространено употребление пива среди моряков на кораблях. Вполне возможно, что оно стало популярным и среди корабельных капелланов.
  • С какой из участвующих в споре сторон согласны вы? Или, возможно, у вас есть аргументы в пользу обеих точек зрения?

    Рис. 6.11. Проблема "королевского слона"

    Рис. 6.12. Проблема "корабельного капеллана "

    4. Просмотрите пример из врезки 6.1. Придумайте обработчик сообщения для класса square, который будет вычислять площадь объекта этого класса, например объекта square-one, а затем присваивать вычисленное значение слоту этого объекта.

    Для этого вам понадобится сначала внести изменения в определение класса square.

    (defclass square (is-a rectangle)

    (slot length-of-sides (create-accessor write))

    (slot area (create-accessor write)))

    Согласно этому определению, класс square имеет два слота: length-of-sides — для хранения длин сторон объекта, area — для хранения его площади. Фацет create-accessor в определении слота говорит о том, что функции доступа к слоту должны автоматически формироваться средствами языка CLIPS. Последние самостоятельно сформируют объявления функций put-length-of-sides и put-area. Эти наименования функций можно затем использовать в обработчиках сообщений.

    Второй шаг — модифицировать спецификацию объекта, в которую следует включить задание длин сторон:

    (definstances geometry (square-one of square

    (length-of-sides 10)))

    Теперь остается только разработать обработчик события, который будет использовать функцию для установки нужного значения в слот area объекта square-one.

    5. Метод, который был реализован в предыдущем упражнении, хорош для работы с квадратами, но с его помощью нельзя решить аналогичную проблему при работе с другими четырехугольниками, представленными в нашей иерархии,— прямоугольниками, параллелограммами и трапециями. Теперь, когда вы знаете, как сформировать слоты и обработчики событий, пользуясь средствами языка CLIPS, попытайтесь решить и эту проблему. Для этого вам потребуется передавать объекту любого класса, расположенного в иерархии ниже узла четырехугольник, сообщение, в ответ на которое соответствующий обработчик должен извлечь данные из слотов, представляющих отдельные исходные параметры формы фигуры (длины сторон, высота и т.д.), и обрабатывать их по формуле, специфичной для фигур каждого вида. Постарайтесь найти такое решение, которое позволяло "бы обрабатывать различные фигуры по возможности единообразно. Учтите, что подклассы могут наследовать и слоты, и обработчики сообщений от своих суперклассов (предшественников).