Реферат: Разработка агрегатного станка для обработки группы отверстий в детали "Крышка"

Разработка агрегатного станка для обработки группы отверстий в детали "Крышка"

окружности со смещением в 60° каждая относительно предыдущей. На каждой стойке, на определённой высоте, устанавливается силовая головка модели У1Х4035.300, (расположение силовой головки в пространстве – вертикально) которая непосредственно участвует в процессе обработки. Еще две силовые головки располагаются непосредственно на станине – горизонтально (так же по окружности со смещением в 60°). Позади стола расположена гидростанция. В первой позиции вместо стойки с силовой головкой расположен стул, предназначенный для удобства рабочего (оператора). На передней поверхности расположен пульт управления (кнопочная станция).

Из вышесказанного ясно, что данный агрегатный станок является шестипозиционным. В нем пять рабочих позиций и одна загрузочная. Общий вид агрегатного станка приведен на чертеже общего вида ТПЖА. 041400.235 ВО. Установка заготовок и снятие деталей производится рабочим из питателя. Время снятия и установки является перекрываемым временем обработки на лимитирующей позиции, которой является позиция №4 (силовая головка №3), где производится нарезание резьбы в четырех отверстиях, поскольку только в данной позиции применяется симметричный, а, следовательно, самый длительный цикл обработки.

Основной особенностью подобного оборудования является автоматическая работа, почти не требующая вмешательства человека. Рабочий только снимает деталь и устанавливает заготовку. Здесь автоматическая работа осуществляется за счёт совместных действий совокупности различных приводов движения, переключателей, датчиков и таймеров, объединённых в единый, отлаженный механизм. При этом заготовка последовательно проходит ряд остановок, на каждой из которых совершается технологическая операция. После выполнения тех. операции силовая головка автоматически выключается, этому способствует датчик, который активизируется в конце тех. операции. После остановки всех агрегатных головок стол поворачивается (начало поворота после остановки лимитирующей силовой головки) и включается таймер, по команде которого зажимается планшайба стола, и запускаются все агрегатные силовые головки. Таким образом, данный цикл может повторяться сколько угодно долго, пока оператор не нажмёт на пульте управления кнопку «СТОП».

Данный станок работает в следующей последовательности. В начале смены рабочий загружает заготовку в позиции №1 (загрузочная), после чего он нажимает кнопку «ПУСК» на панели управления. Происходит включение электродвигателя ЭД1 гидростанции. Одновременно с этим включается электромагнит Э2 распределителя гидроцилиндра зажима стола, последний при этом освобождает зажим стола. И одновременно же с этими событиями поступает сигнал на таймер (ТМР2), который с определенной задержкой времени включает электромагнит Э4 гидрораспределителя, после чего происходит поворот стола с помощью гидромотора. При повороте стола на угол 60° один из шести скошенных упоров набегает на подвижный скошенный фиксатор. При этом последний, перемещаясь в осевом направлении, включает выключатель ВК1, который дает команду на реверс гидродвигателя. Непосредственно перед этим подвижный скошенный фиксатор нажимает золотник, который замедляет вращение стола, когда же гидромотор реверсируется, указанный золотник возвращается в исходное положение. При незначительном обратном вращении стола включается датчик исходного положения ВК2. Срабатывание датчика включает таймер ТМР1, выдержка которого достаточна для создания необходимого усилия контакта скошенных упора и фиксатора. Срабатывание таймера отключает гитдродвигатель и включает зажим планшайбы стола.

Срабатывание таймера ТМР1, кроме вышеописанных действий, осуществляет одновременный запуск электродвигателей всех силовых головок. Происходит одновременная обработка деталей во всех пяти рабочих позициях. По окончании цикла обработки лимитирующей силовой головки СГ №3 ее выключатель ВК6 включает электромагнит Э2 распределителя гидроцилиндра зажима стола и подает сигнал на таймер ТМР2, который с определенной задержкой времени включает электромагнит Э4 гидрораспределителя, после чего происходит поворот стола с помощью гидромотора. Таким образом, цикл начинает повторяться.

Принцип действия применяемых на станке силовых головок заключается в следующем. Главное движение передается от электродвигателя через зубчатую передачу на пустотелый червяк, вращающийся в подшипниках качения. От червяка через шлицевое соединение вращение передается шпинделю.

Движение подачи осуществляется пинолью совместно со шпинделем относительно корпуса головки. От вышеупомянутого червяка через червячное колесо, предохранительную и кулачковую муфты, сменные шестерни вращение передается на шестерню кулачка. Ось кулачка закреплена на пиноли и сообщает последней возвратно-поступательное движение.

Для нарезания резьбы на СГ №3 используется микропереключатель ВК5, который в определенный момент подает команду на реверсирование электродвигателя головки. При этом и вращение шпинделя, и вращение кулачка осуществляются в обратных направлениях.

Особое значение в схеме управления имеет пневмораспределитель, монтируемый в центре стола и обеспечивающий автоматизацию срабатывания на зажим – разжим приспособлений, закрепленных на столе станка. Благодаря этому функция рабочего сводится к простой установке заготовки без ее крепления, а это сокращает вспомогательное время и способствует применению автоматического режима работы станка.

В конце работы, нажатием кнопки «Стоп» на пульте управления происходит выключение всех двигателей силовых головок, а также привода поворота стола.

. Расчетная часть


Выбор типа агрегатного приспособления


По заданию необходимо разработать агрегатное приспособление. Для данного случая это будет автоматизированное зажимное приспособление.

При обработке детали «Крышка» отверстия необходимо просверлить центрично относительно оси вращения. Наружный диаметр детали выполнен с достаточной точностью (Ж170h8). Также необходимо избежать погрешности поворота детали по вертикальной оси. Таким образом, одна из поверхностей базирования будет нижняя поверхность крышки а вторая наружный диаметр 170 мм, а зажатие заготовки будет осуществляться сверху ближе к краю в четырех местах с помощью пневмоцилиндра.


Определение усилия зажима

При сверлении отверстий, а так же во время выхода сверла за счет сил трения между сверлом и деталью, деталь подхватывается инструментом, поэтому заготовку необходимо зажимать. Таким образом, необходимо вычислить усилия зажима при максимальных осевых силах (Р0=2928Н). Эскиз зажима приведён на рисунке 8.


Рисунок 8 – Эскиз зажима заготовки


Заготовку с разных сторон прижимают четыре прижима. Усилие зажима, развиваемое на каждом прижиме, определяется по формуле:

W = P / (4 ∙ƒ), Н


где ƒ – коэффициент трения скольжения, возникающее между поверхностью заготовки и губкой. По справочнику [6] выбираем ƒ = 0,2.

Подставляем в формулу:


W =2928 / (4 * 0,2) = 3660 Н

Рц = W∙Kзп = 3660 ∙ 1,4 = 5125 Н


где Kзп – коэффициент запаса прочности.


Расчет диаметра поршня пневмоцилиндра

В качестве источника силы, обеспечивающего зажим, будет использоваться пневмоцилиндр.

Давление в гидроцилиндре, необходимое для получения необходимого усилия определяется по формуле:


ρ = Pц / F , Н/м2


где F – площадь цилиндра, м2.


F = π ∙ d2 / 4


Давление в промышленных пневмосистемах 6 атм. и выше (1атм. = 0.0980665 МПа)

Зная давление можно рассчитать площадь цилиндра и диаметр поршня.


Подставляем в формулу:


ρ ≈ 0,6 МПа F = 5125/0,6 = 8540 → d ≈ 105 мм


Чертёж общего вида агрегатного приспособления приведён в графической части на чертеже ТПЖА.413540.235 СБ.



Рисунок 9 – Приспособление зажимное агрегатное.

Определение длительности рабочего цикла на базе построения циклограммы работы агрегатного станка


По заданию длительность рабочего цикла определяется на базе построения циклограммы работы спроектированного оборудования. Для этого нужно знать длительность рабочего цикла каждой головки, а так же время поворота на одну позицию поворотного стола.

Длительность рабочего цикла определяется по формуле:


Тц = tо + tв, с


где tо – основное (машинное) время обработки данной детали, с;

tв – вспомогательное не перекрываемое время, с.


Для определения основного времени необходимо знать режимы резания, а так же длину рабочего хода инструмента, которая определяется по уравнению:


L = l + l1 + l2, мм


где l – длина обрабатываемой поверхности, мм;

l1 – величина врезания инструмента, мм;

l2 – величина перебега инструмента, мм.


Величина недовода находится в пределах , а перебега при сверлении и резьбообработке .

Определяем длительность основного времени всех силовых головок:

Позиция №2, вертикальная головка (СГ1) (сверление четырех отверстий Ж8,5 мм) , , , ;

Позиция №3, вертикальная головка (СГ2) (снятие фасок с 4-х отверстий) – , , , ;

Позиция №4, вертикальная головка (СГ3) (нарезание резьбы) – , , , ; (время рабочего хода удваивается в связи с выводом инструмента)

Позиция №5, горизонтальная головка (СГ4) (сверление центровочного отверстия) – , , , ;

Позиция №6, горизонтальная головка (СГ5) (сверление отверстия Ш5) – , , , ;


Вспомогательное время – это время подвода и отвода инструмента, а так же время установки заготовки и снятия детали:


tв = tпод + tотв + tд, с


где tпод – время подвода инструмента, с;

tотв – время отвода инструмента, с.

В рассматриваемом процессе установка заготовки и снятие детали осуществляется во время обработки, по этому это время не учитывается, но имеется время, затрачиваемое на поворот стола (tд = 3,5 с). В этот период времени не происходит процесс обработки, то есть фактически процесс изготовления детали не осуществляется. Поэтому вспомогательное время должно быть как можно меньше.

Для уменьшения вспомогательного времени процесс подвода инструмента осуществляется на ускоренных подачах (до 5 м/мин), а так же изначальное положение инструмента должно быть как можно ближе к обрабатываемой поверхности. Выбираем расстояние от поверхности заготовки до режущего инструмента 50 мм, тогда время быстрого подвода будет 0,01 мин = 0,6 с. (До цилиндрической поверхности (5 и 6 позиция) 65 мм, t = 0,13 мин = 0,78 с)

Время отвода инструмента на каждой позиции агрегатного станка разное, так как длина отвода складывается из длины подвода и длины рабочего хода инструмента, а длина рабочего хода везде разная. Скорость отвода 5 м/мин; В итоге скорости отвода по позициям будут следующие:


2-я позиция – расстояние 68 мм, tотв = 0,0136 мин = 0,82 с;

3-я позиция – расстояние 54,5 мм, tотв = 0,011 мин = 0,66 с;

4-я позиция – расстояние 50 мм, tотв = 0,01 мин = 0,6 с;

5-я позиция – расстояние 73 мм, tотв = 0,0116 мин = 0,88 с;

6-я позиция – расстояние 81 мм tотв = 0,0132 мин = 0,97 с;

Между позициями – время поворота стола на одну позицию, tотв = 3,5 с.

Длительность рабочего цикла по позициям:

2-я позиция Тц = 3,5 + 0,6 + 8,75 + 0,82 = 13,67 с;

3-я позиция Тц = 3,5 + 0,6 + 7,8 + 0,66 = 12,56 с;

4-я позиция Тц = 3,5 + 0,6 + 11,6 + 0,6 = 16,3 с;

5-я позиция Тц = 3,5 + 0,78 + 2,4 + 0,88 = 7,56 с;

6-я позиция Тц = 3,5 + 0,78 + 7,2 + 0,97 = 12,45 с;

Циклограмма представлена на рисунке10.


Рисунок 10 – Циклограмма работы станка


Как видно из циклограммы, лимитирующей является третья силовая головка. Таким образом, длительность цикла всего станка равна Тц = 16,3с.


Расчет цикловой производительности разработанного агрегатного станка


Производительность является важнейшей характеристикой любого автоматизированного оборудования. Она показывает количество деталей, выпускаемых этим оборудованием в единицу времени.

В зависимости от временного интервала производительность бывает: минутная, часовая и сменная.

В зависимости от этапа проектирования производительность постепенно уточняется, и исходя из этого существует три вида производительности: цикловая (Qц), техническая (Qт) и фактическая (Qф).

Описываемое оборудование на данный момент находится на этапе проектирования и известны только длительность рабочего цикла, значит можно подсчитать только предварительную (цикловую) производительность, которая определяется по формуле:


Qц = К / Тц


где К – коэффициент перевода, учитывающий единицу времени (К = 60 – для минутной производительности, К = 3600 – для часовой и К = 28800 – для сменной);

Тц – длительность рабочего цикла, с (Тц = 16,3с).


В данном случае используем часовую производительность, так как она наиболее приемлемо характеризует работу оборудования (при минутной получаются дробные значения, а при сменной значения слишком большие):


Qц = 3600 / 16,3 = 220 дет/час


Техническая производительность определяется при более детальном рассмотрении технологического оборудования, учитывая затраты времени на ремонт, обслуживание и переналадку, а так же время простоев. А фактическая производительность определяется в процессе эксплуатации оборудования, там учитываются потери времени по организационным причинам.


Расчет коэффициента загрузки разработанного агрегатного станка и его анализ


Коэффициент загрузки агрегатного станка определяется по формуле:

,


Где – действительный годовой фонд работы оборудования, ч (при пятидневной рабочей неделе и односменной работе составляет );

– годовая программа выпуска, шт/год.


Тогда получается:



Полученный коэффициент загрузки разработанного станка значительно меньше нормативного, который составляет . Следовательно, необходимо по окончании выполнения годовой программы переоборудовать станок на изготовление деталей из действующего производства, имеющих сходные размеры и виды обрабатываемых поверхностей.

Заключение


В курсовой работе были оценены два различных метода обработки детали «Крышка», а именно модернизация универсально-сверлильного станка, и разработка агрегатного станка. За основу был взят метод агрегатирования, как наиболее оптимальный при данной годовой программе выпуска.

Была выбрана наиболее оптимальная схема базирования детали на станке, определено необходимое число технологических переходов, подобраны инструменты, произведен расчет режимов резания, выбрано стандартное оборудование и приведены технические характеристики.

Также была разработано приспособление зажимное, описана его конструкция и приведены необходимые расчеты.

Было описано устройство и принцип действия агрегатного станка. В соответствии с выбранным оборудованием была произведена коррекция режимов резания и определены нормы времени по позициям, а также цикловое время. Был рассчитан коэффициент загрузки станка и предложены меры для дозагрузки.


Приложение А

(обязательное)


Карта технологических наладок на операцию «агрегатная»



Приложение Б



Приложение В


Приложение Г

(обязательное)


Циклограмма работы агрегатного станка


Приложение Д

(обязательное)


Библиографический список


Кувалдин Ю.И. Технология машиностроения: Учебное пособие для выполнения контрольных работ / Ю.И. Кувалдин, В.Д. Перевощиков, А.Ю. Вылегжанин. – Киров: Изд-во ВятГУ, 2005. – 64 с.

Ю.В. Барановский Режимы резания металлов. Справочник. Изд. 3-е, переработанное и дополненное. М., «Машиностроение», 1972. – 405 с.

Общемашиностроительные нормативы режимов резания: Справочник: В 2-х т.: Т. 1/А.Д. Локтев, И.Ф. Гущин, В.А. Батуев и др. – М.: Машиностроение, 1991. – 640 с.: ил.

Справочник технолога машиностроителя. В двух томах. Изд. 3, переработанное. Том 2. Под ред. Заслуженного деятеля науки и техники РСФСР д-ра техн. наук проф. А.И. Малова. М.: «Машиностроение», 1972, 568 с.

Апатов Ю.Л. Каталог унифицированных узлов. 202 с.

Станочные приспособления: Справочник. В 2-х т. / Ред. совет: Б.Н. Вардашкин (пред.) и др. – М.: Машиностроение, 1984. – Т. 1 /Под ред. Б.Н. Вардашкина, А. А. Шатилова, 1984. 592 с., ил.

Обработка металлов резанием: Справочник технолога / А.А. Планов, В.В. Аникин, Н.Г. Бойм и др.; Под общ. ред. А.А. Планова. – М. Машиностроение. 1988. – 736 с.: ил.

Апатов Ю.Л. Автоматизация механической обработки деталей применением металлорежущего оборудования с ЧПУ: учебное пособие. – Киров: Изд-во ВятГУ, 2008. – 173 с.: ил.

Апатов Ю.Л. Автоматизация производственных процессов в машиностроении (АППМ): учебное пособие. – Киров: Изд-во ВятГУ, 2001. – 75 с.: ил.

Методические указания к курсовой работе по дисциплине «Автоматизация производственных процессов в машиностроении». – Киров: Изд-во ВятГУ, 2001. – 54 с.: ил.

Проектирование и производство заготовок в машиностроении: Учеб. Пособие / П.А. Руденко, Ю.А. Харламов, В.М. Плескач; Под общ. ред. В. М. Плескача. – К.: Выща шк., 1991. – 247 с.: ил.

Фоминых В.В. Правила оформления технологических процессов механической обработки: Учебное пособие для курсового и дипломного проектирования / В.В. Фоминых, Ю.И. Кувалдин. – Киров: изд-во ВятГУ, 2005. – 125 с.

37