Реферат: Операторы в вейвлетном базисе

Операторы в вейвлетном базисе

замены /2 на , получаем необходимое условие

(1.17)

для коэффициентов hk в (1.11). Заметив, что

(1.18)

и определив функцию следующим образом:

, (1.19)

где

, k=0,…,L-1 , (1.20)

или преобразование Фурье для

, (1.21)

где

, (1.22)

можно показать, что при каждом фиксированном масштабе jZ вейвлеты

{j,k(x)=2-j/2(2-jx-k)}kZ образуют ортонормальный базис пространства Wj.

Равенство (1.17) определяет пару квадратурных зеркальных фильтров (quadrature mirror filters, QMF) H и G, где и . Коэффициенты QMF H и G вычисляются с помощью решения системы алгебраических уравнений. Число L коэффициентов фильтра в (1.11) и (1.22) связано с числом исчезающих моментов М, и всегда четно.

Выбранный фильтр Н полностью определяет функции и и, таким образом, многомасштабный анализ. Кроме того, в правильно построенных алгоритмах значения функций и почти никогда не вычисляются. Благодаря рекурсивному определению вейвлетного базиса, все операции проводятся с квадратурными зеркальными фильтрами H и G, даже если в них используются величины, связанные с и .




4. ОПЕРАТОРЫ


Сжатие операторов или, другими словами, представление их в разреженном виде в ортонормированном базисе непосредственно влияет на скорость вычислительных алгоритмов.

Нестандартная форма оператора Т с ядром K(x,y) достигается вычислением следующих выражений:

(4.1)

(4.2)

(4.3)


4.1 Оператор d/dx в вейвлетном базисе


Нестандартные формы некоторых часто используемых операторов могут быть вычислены явно. Построим нестандартную форму оператора d/dx. Матричные элементы , , матриц , , и матрицы , где i, l, j Z для оператора d/dx легко вычисляются как

(4.4)

(4.5)

(4.6)

(4.7)

где

(4.8)

(4.9)

(4.10)

(4.11)

Кроме того, используя (1.8) и (1.19), имеем

(4.12)