Реферат: Особенности вулканизма и геодинамика области тройного сочленения Буве

Особенности вулканизма и геодинамика области тройного сочленения Буве

западнее новой (параллельной) зоны спрединга в пределах САХ в период между хронами 31 и 25 (68-56 млн лет).

К западу от этой палеоспрединговой зоны на восточном фланге САХ (между 2o и 10oв.д.) находится дугообразное поднятие Метеор. По своей форме и размерам оно вполне сопоставимо с островной дугой Скоша. Вероятно, это вулканическое поднятие (как и дуга Скоша) имеет островодужную природу. Его образование можно объяснить следующим образом. К западу от палеозоны спрединга располагался блок мощной консолидированной коры (Фолклендское плато). Последний препятствовал нормальному раскрытию Южной Атлантики. В результате взаимодействия (столкновения) коры, образованной к западу от палеорифта САХ и мощной коры Фолклендского плато, сформировалась зона субдукции с соответствующим вулканическим (островодужным) поднятием Метеор. В последующем, после перескока зоны спрединга существенно западнее, последняя, как и палеорифт САХ, прекратила свое существование в качестве островной дуги.

К сожалению, на сегодняшний день нам не известны работы по изучению вещественного состава поднятия Метеор. Но гора Шона, учитывая состав вулканитов, встреченных на ней, может рассматриваться как один их наиболее удаленных к западу флангов позднемеловой островной дуги, разрезанной более молодыми структурами САХ.

Обсуждение

К основным факторам, определяющим разнообразие состава вулканитов в районе тройного сочленения Буве, относятся: плюмовая активность, сложная геодинамика района тройного сочленения, приведшая к многообразию форм взаимодействия плюмового магматизма с рифтовым магматизмом и веществом литосферы, а также, возможно, геологическая предыстория данного района.

Плюм глубинной мантии в районе ТСБ поднимается по двум главным каналам, поверхностным проявлением которых являются вулканические постройки Буве и Шписс. Видимо, эти каналы питаются на глубине из одного источника, имеющего форму близкую к эллипсоиду, вытянутому к северо-западу, связанную с перемещением материала в этом направлении. Под островом Буве канал более крупный и горячий, что приводит к формированию в этом районе более мощной литосферы и долго живущих промежуточных камер, в которых осуществляется более глубокая кристаллизационная дифференциация расплавов. Плюмы продуцируют расплавы, обогащенные литофильными элементами и радиогенными изотопами. Проявление плюмовой активности в данном регионе началось не ранее 2-2,5 млн лет назад.

В районе хребта Шписс плюм локализован под осевой частью спрединга, что приводит к смешению его выплавок с расплавами истощенных толеитов. Но взаимодействие двух мантийных источников не ограничивается лишь процессами смешения, которые сами по себе довольно сложны. Происходит изменение условий частичного плавления в них, одним из следствий которого может быть вовлечение в процесс плавления метасоматизированной мантии, фрагменты которой могли сохраниться с момента раннего рифтогенеза. Плюм, локализованный под хребтом Шписс, охватывает своим влиянием и рифтовый вулканизм близко расположенного САХ. Однако в данном случае процесс смешения носит иной характер. Обогащенные разности распространены дискретно среди деплетированных базальтов, при этом компоненты деплетированного источника доминируют в них над компонентами плюмового источника.

В районе острова Буве плюм локализован в стороне от осевой части спрединга, тем не менее, его влияние на рифтовый вулканизм значительно. Во-первых, в рифтовой долине наблюдается излияние базальтов, производных от расплавов, генерированных при частичном плавлении непосредственно вещества плюма. Во-вторых, практически отсутствуют деплетированные разности, но преобладают обогащенные толеиты, представляющие собой продукт смешения деплетированных и плюмовых расплавов. Доля плюмового компонента в обогащенных базальтах велика.

От этих двух основных каналов происходит подлитосферное растекание плюмового вещества, обогащенного флюидной фазой и элементами, обладающими большим сродством к ней, в частности, калием и фосфором. Эти флюидонасыщенные плюмовые дериваты также могут продуцировать расплавы, которые будут обогащены калием, фосфором и др. При этом вследствие повышенной флюидонасыщенности эти расплавы взаимодействуют с окружающим субстратом, по-видимому, на уровне промежуточных очагов в верхней мантии. В результате этого может происходить неравномерное обогащение расплавов хромом. Излияния базальтов, производных от таких расплавов, наблюдаются на участках растяжения литосферы как на границах плит, в частности, в рифтовой долине АфАХ, так и внутри плит.

В случае, если зоны магмогенерации, связанные с флюидонасыщенными дериватами плюмов, возникают в условиях сжатия, то в ходе эволюции этой локальной магматической системы формируются закрытые промежуточные камеры, вероятно, на уровне истощенной верхней мантии, где происходят процессы активной ассимиляции субстрата с участием флюидов и интенсивная флюидо-магматическая дифференциация, приводящая к формированию вулканической серии пород схожей с известково-щелочной. Такой процесс, очевидно, мог иметь место и при формировании горы Шона, но только в более раннее геологическое время. С другой стороны гора Шона может являться фрагментом древней внутриокеанической островной дуги.

Непосредственно вблизи тройного сочленения обнаружены базальты аномально обогащенные фосфором и рядом элементов-примесей (Th, Ba, B, Ce), а также радиогенными изотопами. Они резко отличаются по этим параметрам, а также по характеру дифференциации от остальных базальтов района. Одними из наиболее предпочтительных источников вещества, которое может обеспечить такие изотопные метки в данных базальтах, могут быть континентальная мантия или древняя океаническая кора. В ходе сложной геологической предыстории этого региона блоки континентальной мантии или древней океанической коры могли сохраниться среди более молодой океанской литосферы. В районе тройного сочленения эти блоки могли оказаться в зонах аномального разогрева литосферы, в частности, в момент соединения трех спрединговых хребтов в одной точке и быть частично подплавлены.

Выводы

Среди вулканитов района тройного сочленения Буве выделяется шесть основных петро-геохимических групп.

Наиболее распространенным типом являются базальты N-MORB, производные деплетированного мантийного источника, встреченные на всей изученной территории.

Субщелочные вулканиты: гавайиты и муджиериты, - сильно обогащенные литофильными элементами и радиогенными изотопами, слагающие вулканическое поднятие Буве, и близкие к ним базальты и андезито-базальты хребта Шписс, генерированные в обогащенной более глубинной мантии.

Относительно слабо обогащенные базальты (T-MORB), являющиеся продуктами смешения расплавов двух первых типов, распространены в приосевых частях САХ, АфАХ и АмАХ.

Базальты близкие по степени обогащения литофильными элементами-примесями вулканитам хребта Шписс и острова Буве, но более богатые в сравнении с ними калием, фосфором, титаном, хромом. Они развиты в пределах структур растяжения: рифтовая долина АфАХ, грабены Восточной области дислокаций, линейное поднятие между хребтом Шписс и вулканом Буве. Их исходные расплавы, вероятно, формировались из вещества плюмов, растекавшегося от основных каналов и претерпевшего мантийную флюидно-магматическую дифференциацию.

Вулканическая серия от базальтов до липаритов, характеризующаяся низкими содержаниями литофильных элементов и особенно низкой концентрацией титана, распространенная на горе Шона и на других структурах сжатия в пределах Антарктической и Южно-Американской плит вблизи ТСБ. В отличие от четырех предыдущих типов, имеющих толеитовый тренд дифференциации, характеризуется известково-щелочным трендом. Их родоначальные расплавы могли быть также связаны с веществом плюмов, но в дальнейшем испытали интенсивную флюидо-магматическую дифференциацию и ассимиляцию субстрата в условиях закрытых магматических камер на уровне верхней мантии. С другой стороны гора Шона может быть фрагментом древней внутриокеанической островной дуги.

Обогащенные базальты, отличающиеся от других обогащенных типов очень высокими концентрациями фосфора и радиогенных изотопов, слагают тектоническое поднятие вблизи сочленения трех рифтов. Вероятно, на состав их первичных расплавов оказало влияние подплавление блоков вещества, сильно обогащенного радиогенными изотопами (континентальная мантия? древняя океаническая кора?) на участках аномального разогрева литосферы.

Таким образом, основными факторами, определяющими разнообразие составов вулканитов в данном районе, являются гетерогенность мантийных источников, плюмовая активность, сложная геодинамика района тройного сочленения, вызывающая напряженные состояния в прилегающих участках плит и геологическая предыстория региона. Низкая скорость спрединга и, следовательно, недостаточно эффективное перемешивание неоднородного мантийного материала обуславливает сильные пространственные вариации составов базальтов.

 

Литература

Данюшевский Л. В., Соболев А. В., ДмитриевЛ.В., Ортопироксенсодержащие низкотитанистые толеиты - новый тип толеитов океанических рифтов, Докл. АН СССР, 292, (6), 1449-1453, 1987.

Диденко А. Н., Пейве А. А., ТихоновЛ.В., Петромагнитные и петрологические вариации вдоль Срединно-Атлантического и Юго-Западно-Индийского хребтов в районе тройного сочленения Буве, Физика Земли, (12), 47-66, 1999.

Дубинин Е. П., Сущевская Н. М., ГрохольскийА.Л., История развития спрединговых хребтов Южной Атлантики и пространственно-временное положение тройного соединения Буве, Российский журнал наук о Земле, 1, (4), 1999.

Мазарович А. О., Пейве А. А., ЗителлиниН., ПерфильевА.С., РазницинЮ.Н., ТуркоН.Н., СимоновВ.В., АверьяновС.Б., БортолуциА., БулычевА.А., ГаспериниЛ., ГилодД.А., ГладунВ.А., ЕвграфовЛ.М., ЕфимовВ.Н., КолобовВ.Ю., ЛиджиМ., ЛодолоЭ., ПерцевА.Н., СоколовС.Ю., ШутоФ., Морфоструктура района острова Буве, Докл. РАН, 342, (3), 354-357, 1995.

Пейве А. А., Зителлини Н., ПерфильевА.С., МазаровичА.О., РазницинЮ.Н., ТуркоН.Н., СимоновВ.А., АверьяновС.Б., БортолуциД., БулычевА.А., ГаспериниЛ., ГилодД.А., ГладунВ.А., ЕвграфовЛ.М., ЕфимовВ.Н. и др., Строение Срединно-Атлантического хребта в районе тройного сочленения Буве, Докл. РАН, 338, (5), 645-648, 1994.

Пейве А. А., Перфильев А. С., ПущаровскийЮ.М., СимоновВ.А., ТуркоН.Н., РазницинЮ.Н., Строение района южного окончания Срединно-Атлантического хребта (тройное сочленение Буве), Геотектоника, (1), 51-68, 1995.

Пейве А. А., Турко Н. Н., СколотневС.Г., ЛиджиМ., СущевскаяН.М., ФабреттиП., МазаровичА.О., СоколовС.Ю., ГилодД.А., Тройное сочленение Буве, особенности строения и эволюции, Труды ГИН РАН, Вып. 511, Проблемы геодинамики литосферы, c.91-109, Наука, Москва, 1999.

Пущаровский Ю. М., Тектоника и геодинамика спрединговых хребтов Южной Атлантики, Геотектоника, (4), 41-52, 1998.

Пущаровский Ю. М., Симонов В. А., ПейвеА.А., КолобовВ.Ю., ТикуновЮ.В, МельгуновМ.С., Взаимосвязь геохимических особенностей базальтов с геодинамическими обстановками в районе тройного сочленения Буве (Южная Атлантика), Докл. РАН, 361, (2), 1-4, 1998.

Симонов В. А., Пейве А. А., КолобовВ.Ю., ТикуновЮ.В., Геохимия и геодинамика базитов в районе тройного сочленения Буве, Южная Атлантика, Петрология, 8, (1), 38-52, 2000.

Сколотнев С. Г., Вторичные преобразования базальтоидов Ключевской группы вулканов, В сб.: Минеральные преобразования пород океанической коры, 241c., Наука, Москва, 1984.

Сколотнев С. Г., Структурные факторы в истории геологического развития тройного сочленения Буве (Южная Атлантика), Геотектоника, 2000.

Сущевская Н. М., Коптев-Дворников Е. В., ХворовД.М., МигдисоваН.А., ПейвеА.А., СколотневС.Г., БеляцкийБ.В., КаменецкийВ.С., Особенности процесса кристаллизации и геохимии толеитовых магм западного окончания Африкано-Антарктического хребта (хребет Шписс) в районе тройного сочленения Буве, Российский журнал наук о Земле, 1, (3), 221-251, 1999.

Фролова Т. И., Бурикова И. А., ГущинА.В., ФроловВ.Т., СывороткинВ.Л., Происхождение вулканических серий островных дуг, 275c., Недра, Москва, 1985.

Apotria T. G. and Gray N. H., Absolute motion and evolution of the Bouvet triple junction, Nature, 316, (6029), 623-625, 1985.

Apotria T. G. and Gray N. H., The evolution of the Bouvet triple junction: implications of its absolute motion, Tectonophysics, 148, (3/4), 177-193, 1988.

Cande S. C. and Kent D. V., Revised calibration of geomagnetic polarity time scale for the Late Cretaceous and Cenozoic, J. Geophys. Res., 100, (B4), 6093-6095, 1995.

Carrara G., Bortoluzzi G., ZitelliniN., BonattiE., BrunelliD., CiprianiA., FabrettiP., GasperiniL., LigiM., PenitentiD., SciuteF., MazarovichA., PeyveA., TurkoN., SkolotnevS. and GilodD., The Bouvet triple junction region (south Atlantic): a report on two geological expeditions, Giornale di Geologia, 59, Ser 3a, (1-2), 19-33, 1997.

Dick H. J., Fisher R. L. and BryanW.B., Mineralogic variability of the uppermost mantle along mid-ocean ridges, Earth Planet. Sci. Lett., 69, (1), 88-106, 1984.

Dickey J. S., Frey F. A., HartS.R. and WatsonE.B., Geochemistry and petrology of dredged basalts from the Bouvet triple junction, South Atlantic, Geoch. Cosmochim, 41, 1105-1118, 1977.

Green D. H., Hibberson W. D. and JaquesA.L., The Earth: Its origin, structure and evolution, Acad. Press. London, p.265-290, 1979.

Klein E. M. and Langmuir Ch. H., Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness, J. Geophys. Res., 92, (B8), 8089-8115, 1987.

Kleinrock M. C. and Morgan J. P., Triple Junction reconstruction, J. Geophys. Res., 93, (B4), 2981-2996, 1988.

Kurz M. D., Le Roex A. P. and Dick H., Isotope geochemistry of oceanic mantle near the Bouvet triple junction, Geoch. Cosmochim., 62, (5), 841-852, 1998.

La Brecque J. L. and Hayes D. E., Seafloor spreading history of the Agulhas basin, Earth Planet. Sci. Lett., 45, 411-428, 1979.

Le Roex A. P. and Erlank A. J., Quantitative evaluation of fractional crystallization in Bouvet island lavas, J. Volcan. Geotherm. Res., 13, 309-338, 1982.

Le Roex A. P., Dick H., Erlank A. J., ReidA.M., FreyF.A. and HartS.R., Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet Triple Junction and 11 Degrees East., J. Petrol., 24, Part3, 267-318, 1983.

Le Roex A. P., Dick H., ReidA.M., FreyF.A. and ErlankA.J., Petrology and geochemistry of basalts from the American-Antarctic Ridge, Southern Ocean: implications for the westward influence of the Bouvet mantle plume, Contrib. Mineral. Petrol., 90, 367-380, 1985.

Le Roex A. P., Dick H., GulenL., ReidA.M. and ErlankA.J., Local and regional heterogeneity in MORB from the Mid-Atlantic Ridge between 54,5S and 51S: Evidence for geochemical enrichment, Geoch. Cosmochim., 51, 541-555, 1987.

Le Roex A. P., Dick H. J. B. and WatkinsR.T., Petrogenesis of anomalous K-enriched MORB from the Southwest Indian ridge: 11o53E to 14o38E, Contrib. Mineral. Petrol., 110, 253-268, 1992.

Ligi M., Bonatti E., BortoluzziG., CarraraG., FabrettiP., PenitentiD., GilodD., PeyveA., SkolotnevS. and TurkoN., Death and transfiguration of a triple junction in the South Atlantic, Science, 276, 243-245, 1997.

Ligi M., Bonatti E., BortoluzziG., CarraraG., FabrettiP., ZitelliniN., GilodD., PeyveA., SkolotnevS. and TurkoN., Bouvet triple junction in the South Atlantic: geology and evolution, J. Geophys. Res., 104, (B12), 29,365-29,386, 1999.

Mitchell N. C. and Livermore R. A., Spiess ridge: an axial high on the slow spreading Southwest Indian ridge, J. Geophys. Res., 103, (B7), 15,457-15,471, 1998.

McCulloch M. T. and Gamble J. A., Geochemical and geodynamical constraints on subduction zone magmatism, Earth Planet. Sci. Lett., 102, 358-374, 1991.

Ringwood A. E., Slab-mantle interactions 3, Petrogenesis of intraplate magmas and structure of the upper mantle, Chem. Geol., 82, 187-207, 1990.

Schilling J. G., Tompson G., KingsleyR. and HumphrisS., Hotspot-migrating ridge interaction in the South Atlantic, Nature, 313, (5999), 187-191, 1985.

Sclater J. G., Bowin C., Hey R., HaskinsH., PeirceJ., PhillipsJ. and TapscottC., The Bouvet triple junction, J. Geophys. Res., 81, 1857-1869, 1976.

Seyler M. and BonattiE., Regional-scale interaction in lherzolitic mantle in the Romanche Fracture zone, Atlantic ocean, Earth Planet. Sci. Lett., 146, 273-281, 1997.

Simonov V. A., Peyve A. A., KolobovV.Yu., MilosnovA.A. and KovyazinS.V., Magmatic and hylrothermal processes