Реферат: Полимерные композиты на основе диальдегилцеллюлозы и полигуанилинметакрилата

Полимерные композиты на основе диальдегилцеллюлозы и полигуанилинметакрилата

66]. Поэтому нормализация микрофлоры кожи важна и для людей, работающих в указанных выше условиях.

Значительный интерес представляет использование антимикробных целлюлозных волокнистых материалов для борьбы с грибковыми заболеваниями. В обзорах [38, 41] показано, что целлюлозные волокнистые материалы, содержащие галогенпроизводные фенола (ГПФ), ртутьорганические соединения и некоторые другие антимикробные вещества, обладают активностью по отношению к патогенным грибкам, вызывающим микозы ног.

Ткани, содержащие химически связанные гуанидинхлоридфенол (ГХФ) или ионы меди, могут быть использованы и для изготовления спецодежды и средств личной гигиены, применяющихся на предприятиях микробиологической, медицинской и молочной промышленности, а также в медицинских учреждениях, поскольку установлено, что эти ткани обладают активностью по отношению к дрожжеподобным и плесневым грибам, используемым при микробиологических синтезах ферментных препаратов и белково-витаминных концентратов, к Шигелле - Зоне возбудителю дизентерии, различным видам микроорганизмов, выделенным в условиях химико-фармацевтического производства [52 - 63].

Следует отметить, что в некоторых случаях (например, в молочной промышленности) применение антимикробной ткани, содержащей ионы меди, химически связанные с привитой к целлюлозе полиакриловой кислотой, оказывается более эффективным, чем антимикробной ткани, содержащей химически связанный гуанидинхлоридфенол (ГХФ) [67,68].

В настоящее время показана эффективность и целесообразность применения антимикробного нетканого фильтрующего материала, изготовленного из вискозного волокна, в структуру которого в процессе формирования включен гуанидинхлоридфенол (ГХФ) [38, 41] для стерилизации воздуха, подаваемого в технологическое оборудование при производстве витаминов, антибиотиков и пива. Такой антимикробный фильтрующий материал имеет ряд преимуществ перед другими типами фильтрующих материалов.

Таким образом, в результате проведенных исследований показана целесообразность использования антимикробных целлюлозных волокнистых материалов для изготовления одежды, белья, средств личной гигиены, применяющихся в клиниках различного профиля, в горячих цехах, шахтах, длительных экспедициях, для борьбы с микробной инфекцией, лечения и профилактики вызываемых ею заболеваний. Большое значение имеет применение антимикробных целлюлозных волокнистых материалов для изготовления постепенно рассасывающихся в организме и нерассасывающихся перевязочных материалов. Антимикробные целлюлозные волокнистые материалы эффективно используются в качестве фильтрующего материала для очистки и стерилизации технологического воздуха на предприятиях медицинских и пищевой промышленности.

Антимикробные целлюлозные волокнистые материалы могут быть использованы и для изготовления одежды, применяющейся в обычных условиях.

Анализ современного состояния проблемы разработки и применения антимикробных целлюлозных волокнистых материалов свидетельствует о широком развитии исследований в этой области и большом количестве публикуемых работ. В настоящее время установлена определенная взаимосвязь

между строением производных целлюлозы, содержащих химически связанные антимикробные вещества, их химическими и антимикробными свойствами. Большой научный и практический интерес представляет дальнейшее развитие и углубление этих исследований, так как только на их основе могут быть разработаны новые более совершенные способы получения антимикробных волокнистых материалов с заданными свойствами. Первостепенную роль при проведении этих исследований должны играть современные представления о влиянии макромолекулярной природы материала на реакционную способность его функциональных групп (в частности, на гидролиз связи между антимикробным веществом и полимером). В последние годы разработаны способы получения антимикробных целлюлозных волокнистых материалов различного назначения, в том числе и материалов, антимикробные свойства которых сохраняются при многократных мокрых обработках в процессе эксплуатации. Некоторые из этих способов освоены промышленностью. Особенно большое значение имеет разработка в дальнейшем антимикробных целлюлозных волокнистых материалов со строго регулируемым на протяжении всего срока их эксплуатации выделением антимикробных веществ. На основании проведенных систематических исследований в настоящее время определены наиболее эффективные области применения антимикробных целлюлозных волокнистых материалов. Эти области достаточно обширны, однако можно полагать, что в дальнейшем они будут постоянно расширяться.

Влияние строения производного целлюлозы на антимикробную активность волокнистого материала [3].


2. Обсуждение результатов


Как было показано в литературном обзоре, способность целлюлозы и ее производных образовывать ковалентные, ионные или координационные связи с солями четвертичных аммониевых оснований широко используется для модификации большого числа целлюлозных волокнистых материалов, при этом в конечном продукте часто проявляется синергизм уникальных свойств исходных компонентов. Выбор активированной целлюлозы хлопковой и гуанидинсодер-жащих цвиттер-ионных делокализованных резонансных структур для получения новых модифицированных моно- и биматричных композиционных материалов открывает перспективу создания наноструктур и нанокомпозитов с трансформерной полимерной матрицей, представляющих существенный научный и практический интерес. Изделия на их основе можно использовать для изготовления одежды, упаковки, перевязочных материалов медицинского назначения, а также фильтрующих мембран для стерилизации воздуха и обеззараживания речной воды, обладающих одновременно пролонгированными биоцидными и легко регенирируемыми адсорбционными свойствами, поскольку в состав гуа-нидинсодержащих мономеров и полимеров входят ионогенные группы. Именно назначение будущих изделий в значительной степени определило способы их получения, состав и важнейшие параметры новых биоцидных мономеров, тип связывания в них основного биоцидного компонента, природу супрамолекуляр-ных связей, обуславливающих его иммобилизацию с матрицей в композитах, полученных нами.


3. Экспкриментальная часть


3.1 Очистка исходных веществ. Свойства растворителей и реагентов


Отметим, что все исследования проводились с одной партией исходных и синтезированных веществ.

Ключевым фактором при создании композитов на основе целлюлозы хлопковой и биоцидного компонента явилась предварительная активация исходных компонентов для придания способности к структурной и химической взаимной иммобилизации и дополнительной целенаправленной модификации. С этой целью целлюлоза хлопковая (взятая в виде волокнистого материала и бинта) обрабатывалась 1 М водным раствором йодной кислоты. Как было показано в литературном обзоре, при этом образуется диальдегидцеллюлоза, причем количество альдегидных групп зависит от времени обработки и составляет 0,5-33% (максимальное количество альдегидных групп - 36%, такое окисление происходит при обработке целлюлозы йодной кислотой в течение нескольких недель).

Вторым компонентом, используемым нами для получения биоцидного волокнистого нанокомпозита, явился метакрилат гуанидина. Как отмечалась в литературном обзоре, метакриловая кислота и ее производные характеризуются значительной реакционной способностью в реакциях радикальной гомо- и сополимеризации. Ее производные, содержащие виниловый фрагмент и химически активные функциональные группы, представляют собой перспективный ряд мономеров. Соответствующие им полимеры могут сохранять потенциал активности, являясь удобными носителями биологически активных веществ.

Метакрилат гуанидина синтезировали по предлагаемой в литературе [69] методике. По этой методике соль гуанидина (сульфат, карбонат, нитрат и др.) помещали в этилат натрия, через 12 часов отфильтровывали выпавшую натриевую соль и затем к раствору гуанидина при температуре 0-5 С прикапывали очищенную от ингибиторов радикальной полимеризации метакриловую кислоту.


3.2 Синтез мономеров и полимеров


3.2.1 Синтез метакрилатгуанидина (МАГ)

В спиртовой раствор гуанидина, предварительно полученный из этилата натрия и бикарбоната гуагидина, при охлаждении до - 10 °С добавили эквимольное количество метакриловой кислоты ( температура в реакционной массе при этом не превышала -5 °С). Раствор перемешивали 3 часа при комнатной температуре, после чего МАГ выделяли из спиртового раствора высаживанием в избыток диэтилового эфира. Полученную соль перекристаллизовывали из смеси воды и этанола. Выход ~ 73 %.

Синтез нанокомпозитов. В водную суспензию, полученную при перемешивании 50 г диальдегидцеллюлозы и 200 мл дистиллированной воды на магнитной мешалке в течение 2 ч, добавляли расчетное количество МАГ и инициатора полимеризации (NH4)2S2О8 (ПСА). Перемешивание продолжали еще 4 ч для улучшения катионного обмена и образования однородной массы. После этого суспензию разливали по ампулам со шлифами, содержимое каждой ампулы изолировали от доступа воздуха продувкой очищенным азотом. Полимеризацию проводили при 60°С в течение 8 ч. Далее ампулы разбивали, полученные образцы промывали дистиллированной водой и оставляли в закрытом сосуде на сутки в избытке дистиллированной воды. Образцы гибридных наноструктур извлекали, и высушивали до постоянной массы в сушильном вакуумном шкафу при 40°С над Р2О5, после чего сухой остаток измельчали.

Строение и чистоту исходных соединений и конечных продуктов определяли с помощью элементного анализа; ИК-спектроскопии на спектрофотометре SPECORD М82. Образцы для ИК-спектров готовили в виде таблеток с КВг или суспензии в вазелиновом масле.

Рентгенодифракционные данные получены при комнатной температуре на автоматизированном дифрактометре ДРОН-6 (ЗбкВ, 20мА, X СиКа - излучение, графитовый монохроматор на вторичном пучке, съемка по Бреггу-Брентано в интервале углов 2 от 1 до 35°, шаг 0.05°, скорость сканирования 1 град/мин).

Тяжелые металлы в пробах воды до и после очистки композитами определяли с использованием атомно-абсорбционного спектрометра "МГА-915". Содержание металлов определяли по величине интегрального аналитического сигнала по предварительно установленной градуировочной зависимости.


Список используемой литературы


Zubov V.P., Vijaga Kumar М., Masterova M.N. et al // J. Macromol. Sci. 1988. T. 30. №4. c.675.

Кабанов B.A., Топчиев Д.А. // Высокомолек. Соед. А. 1988. Т. 30. с.675.

Топчиев Д.А., Нажметдинова Г.Т., Крапивин A.M. и др. // Высокомолек. Соед. А. 1982. Т. 24. №6. с.437.

Кабанов В.А., Топчиев Д.А., Нажметдинова Г.Т. // Высокомолек. Соед. А. 1984. Т. 26. №1.с.51.

Топчиев Д.А., Нажметдинова Г.Т. и др. // Изв. Ан СССР. Сер.хим. 1983. №10. с. 22-32.

К.Е. Скворцова, Нехорошева А.Г., Гембицкий П.А. // Проблемы дезинфекции и стерилизации. М.: ВНИИДиС, 1974, вып.23, с.58.

Отчет филиала № 5 Института биофизики Минздрава СССР. Ангарск, 1991.

Panarin E.F. // 26 Microsymposium on Macromolecules Polymers in medicine and Biology. Prague, 1984, p.87

Платэ H.A., Васильев A.E. Физиологически активные полимеры. М.:Химия, 1986, с.296.

Ю.Платэ Н.А., Васильев А.Е. // Высокомолек. соед. А, 1982, Т.24, №4, с.675.

ll.Ryser H.J. // Science. 1965, V.150, р.501. 12.Ryser H.J. // Biomembranes. 1971, V.2, p. 197.

13.Ярославов A.A., Кабанов B.A. // Материалы Всероссийского Каргин-ского симпозиума. 2000. Тез. докл. ч.1, с. 17.

И.Фельдштейн М.М. // Синтетические полимеры медицинского назначения. Материалы 6 Всесоюзного симпозиума. Алма-Ата, 1983, с. 142.

15.Отчет филиала № 5 Института биофизики Минздрава СССР по хоздоговору на тему «Результаты исследований перспективных солей ПГМГ хронический эксперимент) с целью внедрения их в народное хозяйство и медицину». Ангарск, 1991г.

16.Тимофеева Л.М., Васильева Ю.А., Клещева Н.А., Топчиев Д.А. // Изв. АН. Сер.хим. 1999. №5. с. 865.

П.Васильева Ю.А., Клещева Н.А., Громова ГЛ., Ребров А.И., Филатова М.П., Крутько Е.Б., Тимофеева Л.М., Топчиев Д.А. // Изв. АН. Сер.хим. 2000. №3. с. 430.

18.Корбут С.А. Дис. канд. мед. наук. М.: НИИЭИ, 1966.

19.Климов А.Н. Пенициллины и целаспорины. Л.: Медицина, 1973. с.95.

20.Александрова В.А., Злобина В.А., Дмитриев Г.А., Милонова Т.И., Федорова Д.Л., Топчиев Д.А. // Хим. фарм. журнал. 1994, №5, с. 18.

21.IkedaT., Yamaguchi Н., Tazuke S. //Antimicrob. Agents Chemother. 1984, V.26,p.l39.

22.IkedaT., Tazuke S., SuzukeY. // Macromol. Chem. 1984, V.185, P.869.

23.IkedaT., Tazuke S. // Polymer. Prep. 1985, V.26, p.226.

24.FranklinT.J., Snow G.A. // Biochemistry of Antimicrobial Action. London:

Chapman and Hall, 1981. 25.FranklinT.J., Snow G.A. // Phytochemistry. 1970, V.48, № 3, p.465. 26.Ghosh M. // Polymer Material Sci. Eng. ACS. 1986, V.55, p.755. 27.Ghosh M. // Polymer News. 1988, V.13, p.71.

28.Панарин E. Ф., Заикина H. А., //Антибиотики том 22, 1977, с. 327. 29.Мусаев У. Н., Каримов А., Иргашева П. X., и др. //Некоторые аспекты

синтеза полимеров медицинского назначения /ФАИ. Ташкент 1973., с.

8-32.

30.Роговин 3. А., Шорыгина Н. Н, «Химия целлюлозы и ее спутников», М -Л., 1953.

31.Помогайло А. Д. «Успехи химии», 66, 750, 1997.

32.Ливиц Р. М., Гальбрайх Л. С, «Химические успехи», 1965., 34, вып. 6, 1086.

33.Васильев А. В., Майборода В. И. // Химические Волокна, 1966, №5,28.

34.Клёсов А. А., Рабинович М. Л., Березин И. В. - Практический курс химии, 1976, том 2, с. 795.

35.Платэ Н. А., Литманович А. Д., Ноа О. В. Макромолекулярные реакции. М.: Химия, 1977, с. 255.

36.Pomogailo A. D., Plat. Vet. Rev., 38. 60 (1994).

37.Голубко Н. В., Яновская М. И., Прутченко С. Г., Оболонкова Е. С, Химия, 34, 1115, 1998.

38.Вольф Л. А., Меос А. И. Волокна специального назначения. М.: Химия, 1971,223 с.

39.Вирник А. Д. Придание волокнистым материалам антимикробных свойств. М: ЦНИИТЭИлегпром, 1972, 64 с.

40.Вирник А. Д. «Успехи в химии», 1973, 42, № 3, 547 - 567.

41.Vigo Т. L. «Antibachterial Fibers in Modified Cellulosic». R. M. Rowel, R. A., Yong. N-Y., Acad. Press. 1978, p. 259 - 284.

42.Вирник А. Д., Пенежник M. А., Кондрашова Г. С. Новое в области получения антимикробных волокнистых материалов и их использование. М.: ЦНИИТЭИлегпром, 1980, с. 56.

43.Вольф Л. А., Емец Л. В., Косторов Ю. А., Перепечкин Л. П., Шамолина И. И. Волокна с особыми свойствами. - М: Химия, 1980, с. 240.

44.Калонтаров И. Я., Ливерант В. Л. Придание текстильным материалам биоцидных свойств и устойчивости к микроорганизмам. Душанбе: До-ниш, 1981,202 с.

45.Vigo Т. L., Benjaminson М. А. «ТехШе Res. J.»? 1981, 51, № 7, 454 - 458. 46. Вирник А. Д., V Всес. конф. по химии и физике целлюлозы. Тез. докл.

Том 2. Ташкент. 1982, с. 17. 47.Пат. НРБ 24468(1979). 48.Пат. НРБ 25141 (1979). 49.Пат. НРБ 30846 (1981).

50.Krkoska P., Ebringer L., Odinsova М., Remanar М. «Cell. Chem. Tech-nob, 1976, 10, № 20, 155 - 160.

51.Krkoska P., Blazej A., Kiss V., Lemanova M., Loborova R. «Cell. Chem. Technol.», 1980, 10, № l, 19 - 27.

52.Погосов Ю. Л. Автореф. дисс. докт. хим. наук. Рига, 1969, с. 31.

53.Роговин 3. А., Вирник А. Д., Кондрашова Г. С, Колоколов Б. Н., Андронова Н. А., Плоткина Н. С. «Cell. Chem. Technol.», 1979, 13, № 4, 441 -461.

54.Кондрашова Г. С, Плоткина Н. С, Вирник А. Д., «Изв. высш. учебн. заведений. Технология текстильной промышленности», 1977, № 6, 134 - 135.

55.Кондрашова Г. С, Плоткина Н. С, Вирник А. Д. В кн.: Химия и технология крашения, синтеза красителей и полимерных материалов. Иваново, 1977, с. 15-19.

56.Dimitrov D. G., Tsanrova G. D. «Cell. Chem. Technol.», 1982, 16, № 1, 19 -26.

57.Пат США 4115422 (1977). 58.Пат США 4174418 (1979). 59.Everst J. H. «Colourage», 1981, 28, №8, 41 - 42.

60.Vigo Т. L., Danna G. F., Welch С. M. «Text. Chem. and Color.», 1977, № 4, 28-31.

61 .Роскин Г. E., Карчева Э. И., Мезенцева Н. Н., Сорокин Е. Я., Беляков Н. А., Симбирцев С. А. III Международный симпозиум по химическим волокнам. Препринты. Том 5. Калинин, 1981, с 139 - 148.

62,Роскин Г. Е., Левит М. Р., Южелевский Ю. А., Карчева Э. И., Сорокин Е. Я.,

бЗ.Плоткинат Н. С, Богомолова Н. С. В кн.: Медико - технические проблемы индивидуальной защиты человека. М.: Министерство здравоохранения СССР, 1982, 67 - 74.

64.Голосова Т. В., Мартынова В. А., Мурашова Н. С, и др., «Гематология и переливание крови», 1978, № 3, 53 - 55.