Реферат: Автоматизована система вимірювання удою молока

Автоматизована система вимірювання удою молока

мА

яскравість при номінальному струмі - 5600-21000 мкКд

колір - червоний

довжина хвилі - 660 нм

схема увімкнення світлодіодів - з загальним анодом

Для живлення мікроконтролера та лінії зв’язку використовують окремі джерела живлення, тому використовуються два стабілізатора напруги, характеристики яких наведено вище.

Для захисту приладу підключення живлення відбувається через діодний міст, тобто полярність підключення живлення не має значення.

5. Електричні розрахунки


5.1 Розрахунок тактового генератора мікроконтролера


Робота мікроконтролера AT90S2313 тактується генератором тактової частоти з кварцевою стабілізацією. Сам генератор знаходиться в корпусі мікросхеми, зовні встановлюється кварцевий резонатор та конденсатори. Для підключення кварцевого резонатора призначені входи мікроконтролера XTAL1 та XTAL2.

Схема підключення мікроконтролера AT90S2313 наведена на рисунку 5.1.


Рисунок 5.1 - Схема підключення мікроконтролера


RC-коло побудоване на R1 і С1 призначене для формування сигналу скидання. BQ1 - кварцевий резонатор, призначений для тактування генератора.

Обираємо кварцевий резонатор з частотою 3.6864 МГц і ємністю 2 пФ.

Значення ємності конденсаторів С2 і С3 обираємо виходячи із співвідношення:

С > 10ЧCBQ (5.1)

де CBQ - ємність кварцевого резонатора.

Обираємо конденсатори ємністю 39 пФ.


5.2 Розрахунок кола скидання мікроконтролера


Для запуску мікроконтролера необхідно, щоб напротязі 1 мс після включення живлення напруга на вході RESET була рівня логічної одиниці. Для цього, як правило, використовують RC-кола (R1 та С1 на рис.5.1).

При ввімкненні напруги живлення напруга на вході RESET при використанні RC-кола на рис.5.1 змінюється за експоненційним законом, який визначається виразом:


, (5.2)


де - напруга живлення;

- постійна часу RС - кола;

t - поточний час.

Напруга, яка сприймається мікроконтролером як рівень логічного нуля дорівнює 0.3. Підставивши це значення в рівняння (5.2) і вирішивши отримане рівняння відносно t отримуємо:


. (5.3)


Обираємо значення опору R1 1 кОм, значення t повинно бути не менше 1 мс, виходячи з цього, знчення ємності С1 можна вибрати користуючись виразом:


(мкФ). (5.4)


Обираємо ємність к50-35 4.7 мкФ х 16 В.

6. Розрахунок похибки вімірювання загального удою


Похибка вимірювання загального удою складається з наступних складових:

складова, зумовлена похибкою тарування ковшового давача

складова похибки, зумовлена накладенням імпульсів від різних приладів

складова похибки визначення удою, зумовлена перешкодами в лінії передачі даних

складова похибки визначення удою, зумовлена "залипанням" і "деренчанням" геркона ковшового давача

складова похибки визначення удою, зумовлена накопиченням молока на стінках трубопроводу

Остання складова похибки дуже мала в порівнянні з іншими складовими. Тому в подальших розрахунках враховувати її не має сенсу. У деяких випадках також можливе багаторазове замикання геркона ("деренчання" геркона) при перекиданні ковшового давача, що приводить до перевищення показань лічильника про кількість удою.

Можливий також випадок, коли геркон не замкнеться при перекиданні ковшового давача ("залипання" геркона), що приводить до зменшення показань про кількість удою. Місце виникнення цієї складової легко визначається обслуговуючим персоналом і усувається шляхом зміни положення геркона або його заміни, тому надалі не будемо враховувати цю складову.

Складова, зумовлена похибкою тарування ковшового давача, має нормальний закон розподілу з нульовим математичним сподіванням. Закон розподілу цієї похибки визначається виразом:


(7.1)


де - абсолютна похибка тарування ковшового давача;

- середньоквадратичне відхилення похибки тарування ковшового давача (у подальших розрахунках приймемо, що змінюється в межах від 0 до 5 г, що відповідає середньоквадратичному значенню похибки визначення удою від 0 до 5%).

При інтенсивному доїнні частота спрацьовування геркона ковшового давача не перевищує одного разу в дві секунди. З цього випливає, що частота інформаційних імпульсів на виході кожного з пристроїв не перевищує 0.5 Гц, а їх шпаруватість не менша 2000. При використанні шістнадцяти паралельно підключених пристроїв частота інформаційних імпульсів на вході лічильника загального удою не перевищує 8 Гц, тобто восьми імпульсів у секунду.

Для дослідження цієї складової будемо розглядати тільки накладення двох імпульсів, тому що імовірність накладення трьох і більш імпульсів мала, внаслідок їх високої шпаруватості.

Розглянемо інтервал часу, тривалістю 1с. За цей час на вхід лічильника загального удою надійде не більш восьми імпульсів. Тому як тривалість імпульсу складає 1 мс, то імовірність його появи в довільний момент часу на інтервалі тривалістю 1 с складає ри=0.001. Тоді імовірність збігу двох незалежних імпульсів у на інтервалі часу 1 с при роботі шістнадцяти приладів складає:


(7.2)


Даний показник свідчить про те, що в на протязі однієї секунди доїння втрачається 0.0016% інформації про кількість імпульсів за цей час. Аналогічно можна розглядати довільний часовий інтервал доїння. Таким чином, можна зробити висновок, що внаслідок накладання інформаційних імпульсів приладів втрачається 0.0016% інформації про кількість удою. У подальших розрахунках приймемо, що =0.0016% є середньоквадратичним значенням цієї складової загальної похибки.

Прилади працюють у досить складній електромагнітній обстановці (потужний електродвигун вакуум-насосу, нагрівач і т. і), що неминуче приводить до виникнення електромагнітних перешкод, які різним шляхом можуть попадати в лінію передачі даних.

Для передання даних використовується оптично ізольована лінія зв’язку, яка нечутлива до синфазних завад. Це технічне рішення дозволяє значно підвищити завадостійкість передання даних. Для подальших розрахунків припустимо, що середньоквадратичне значення цієї складової дорівнює =0.5%.

Таким чином, виділено п’ять основних складових похибки вимірювання загального удою. Дві з них малі в порівнянні з іншими і їхнім внеском у результуючу похибку можна знехтувати. Тому для розрахунку середньоквадратичного значення результуючої похибки будемо враховувати складову, зумовлену похибкою тарування ковшового давача, складову похибки, що зумовлену перешкодами в лінії передачі даних, складову похибки, що зумовлену накладанням інформаційних імпульсів від різних приладів. Середньоквадратичне відхилення результуючої похибки загального удою розраховується за виразом:


. (7.3)


Отже результуюча похибка буде складати не більше 5,03%.