Реферат: Оптимальність у системах керування

Оптимальність у системах керування

1. Умови оптимальності у неавтономних системах керування


У загальному випадку неавтономної системи права частина закону руху й підінтегральна функція цільового функціонала залежать явно від часу , тобто закон руху має вигляд:


, (1)


а цільовий функціонал дорівнює


. (2)


Тут функції і – неперервні по сукупності змінних і неперервно диференційовані по змінних , , .

Також вважатимемо, що момент часу , який відповідає початковому стану , відомий, а момент часу проходження через кінцеву точку не заданий і повинен бути знайдений, тобто сформульована задача – це задача з вільним часом.

Поставлена задача може бути зведена до автономної задачі введенням додаткової змінної . До закону руху при цьому додається рівняння


,


а до початкових умов – співвідношення .

Тепер систему (2) можна переписати у вигляді:


(3)


а функціонал дорівнюватиме


, (4)


де (відповідно до доданого у початкову систему рівняння).

Отже, неавтономну -вимірну задачу було зведено до автономної задачі з розширеним фазовим простором. У новій задачі потрібно знайти оптимальну траєкторію, що поєднує точку розширеного фазового простору з деякою точкою на прямій, яка проходить через точку паралельно осі . Оскільки кінцеве значення змінної невідоме, то нова задача – це задача з фіксованим лівим і рухомим правим кінцями.

Якщо в задачі оптимального керування (3) – (4) відомі і початковий момент часу й кінцевий момент часу , то задача називається задачею з фіксованим часом. Перетворення цієї задачі введенням додаткового змінного приводить до задачі з фіксованими кінцями в такому формулюванні. Потрібно знайти керування , що переводить фазову точку системи (2) зі стану в момент часу у стан в момент часу , причому функціонал (4) набуває найменшого значення. Зауважимо, що момент часу попадання в точку можна не вважати фіксованим, оскільки в силу тотожності попадання в точку може відбутися тільки в цей момент часу. Таким чином, до даної задачі можна застосувати теорему, відповідно до якої для одержання необхідних умов екстремуму функціонала необхідно максимізувати функцію Понтрягіна


, (5)


де – загальний вигляд функції Понтрягіна з теореми 1, у якій не врахована додаткова, ()-ша змінна. Спряжена система для цієї задачі за умов набуває вигляду:


(6)


Має місце така теорема.

Припустимо, , – оптимальний процес для задачі з фіксованим часом. Тоді існує ненульова вектор-функція , що відповідає цьому процесу, така що:

1. Для будь-якого функція змінної набуває максимального значення в точці , тобто:


: .

2. , .


Оскільки, як і раніше, , то умову 2 цієї теореми достатньо перевірити в якій-небудь одній точці відрізка .

Розглянемо випадок, коли при фіксованому правий кінець вільний. Ця задача полягає в тому, щоб із заданого стану за заданий час пройти по траєкторії з довільним кінцевим станом за умови мінімізації цільового функціонала. Умови трансверсальності для цієї задачі набувають вигляду:


, . (7)


Для цього випадку необхідна умова оптимальності полягає в тому, щоб функція досягала максимального значення для кожного на оптимальному керуванні і мала місце умова (7).


2 Поняття особливого керування


На практиці часто зустрічаються задачі оптимального керування, у яких функція Понтрягіна лінійно залежить від всіх керувань або від частини з них (наприклад, в лінійних задачах оптимальної швидкодії). Однак у нелінійних задачах оптимального керування (якщо функція Понтрягіна є нелінійною по одній або декількох фазових змінних) можлива ситуація, коли на оптимальній траєкторії коефіцієнт при одній з компонент вектора керування обертається на нуль всюди на деякому інтервалі часу, і тоді умова максимуму функції за не дозволяє однозначно визначити оптимальне керування. Ця ситуація називається особливим режимом керування. Дослідимо її детальніше.

Розглянемо автономну задачу оптимального керування


,


Де ; , , , ,

– довільна множина з ;

– лінійний простір кусково-неперервних на функцій.

Крайові умови задачі мають вигляд:


, .


Потрібно знайти таке припустиме керування , що переводить систему зі стану у стан , причому відповідний припустимий процес доставляє мінімальне значення функціоналу


,


де функції , неперервні по сукупності всіх змінних і неперервно-диференційовані по змінних .

Вважатимемо, що функція Понтрягіна для цієї задачі є лінійною за частиною компонент вектора . Виділимо із цих компонент групу з керувань (з тих, за якими функція лінійна) і позначимо їх через , а інші керувань зберемо у вектор (він також може включати компоненти, за якими функція лінійна). За таких умов закон руху набуває вигляду:


,


де .

Складемо функцію Понтрягіна для даної задачі:


.


Очевидно, що


, . (8)


Припустимо, що процес разом з розв’язком спряженої системи


, , (9)


задовольняє принципу максимуму і, крім того, припустимо, що у всіх точках деякого інтервалу має місце рівність


, (10)

або, враховуючи (10),


, , . (11)


Ця ситуація означає, що коефіцієнти при на деякому часовому відрізку дорівнюють 0, і оптимальне керування визначити неможливо. У цьому випадку вектор керувань називається особливим керуванням на відрізку , процес – особливим режимом, траєкторія – траєкторією особливого режиму, а відрізок часу – ділянкою особливого керування.

З формули (11) випливає, що на ділянці особливого режиму функція Понтрягіна не залежить від . Дійсно, :


.


Тому в даній ситуації умова максимуму по не дає жодної інформації про конкретні значення керувань .

Оскільки на ділянці особливого режиму має місце співвідношення (11), то очевидно, що


,


і т.д. Останні співвідношення разом з умовою (10) дозволяють визначити всі особливі режими.


3. Лінійна задача оптимальної швидкодії


Розглянемо лінійну задачу оптимальної швидкодії:


, , (12)


де , ,

, – числові матриці розмірності та відповідно.

Область керування задачі – замкнутий обмежений багатогранник в :


, , (13)


Якщо для будь-якого вектора , паралельного будь-якому ребру багатогранника , система векторів , , …, (14) є лінійно незалежною, то багатогранник задовольняє умові спільності положення відносно системи (14).

Для перевірки лінійної незалежності векторів (13) достатньо перевірити, чи матриця, стовпцями якої є стовпці (12), є невиродженою, тобто


.


Перепишемо формулу (10):


, ,


де , -і рядки матриць і .

Функція Понтрягіна лінійної задачі оптимальної швидкодії має вигляд:


(15)


Оскільки перший доданок у формулі (15) не залежить від , то функція досягає максимуму за змінною одночасно з функцією


.


Спряжена система у цьому випадку може бути записана у вигляді:


, ,


або у векторній формі


. (16)


Позначимо через . З теореми 2