Реферат: Введение в популяционную и медицинскую генетику

Введение в популяционную и медицинскую генетику

за счет чего происходит компенсация и сохранение генетического разнообразия. Если А мутирует в а со скоростью U, а а обратно мутирует в А со скоростью V, тогда равновесные частоты аллелей будут равны

p* = V/(U + V), q* = U/ (U + V).

Отметим два обстоятельства. Во-первых, частота аллелей обычно не находится в состоянии, отвечающим равновесию между прямыми и обратными мутациями, поэтому на них влияют и другие процессы (например, естественный отбор). Во-вторых, при наличии прямых и обратных мутаций изменения частот аллелей происходят медленее, чем в том случае, когда мутации идут только в одном направлении, посколько обратные мутации частично компенсируют изменение частоты аллелей в результате прямых мутаций. Это еще раз доказывает, что для того, что бы мутации сами по себе привели к сколько-нибудь значительному изменению частот аллелей, требуется много времени.

Естественный отбор

К идее естественного отбора как основного процесса эволюции пришли независимо друг от друга Чарльз Дарвин и Альфред Рассел Уоллес. В 1858 году на заседании Линнеевского общества в Лондоне были представлены сообщения об их открытии. Доказательства того, что эволюция происходит именно путем естественного отбора, были представлены Дарвином с приведением множества примеров в его работе "Происхождение видов", опубликованной в 1859 году.

Основой теории естественного отбора является факт, что некоторые генотипы в популяции имеют преимущества перед другими, как в выживании, так и при репродукции. То, что генотипы в данных условиях имеют возможность выжить и оставить плодовитое потомство, называется генетической приспособленностью. Она обуславливает направленное сохранение генотипа.

Естественный отбор благоприятствует (и противодействует) сохранению генотипа только через посредство фенотипа. В связи с этим выделено два исхода действия отбора: положительный отбор (сохранение "полезных" генотипов) и отрицательный отбор (эллиминация "вредных" генотипов). Таким образом, естественный отбор – это направленный процесс, движущая сила эволюции.

В качестве количественной меры отбора используется относительная приспособленность (называемая также селективным, или адаптивным значением). Приспособленность является мерой эффективности размножения данного генотипа, мерой вклада его в следующее поколение.

Особенности существования организма на различных ступенях жизненого цикла могут оказывать влияние на его репродуктивный успех, определяющий направление естественного отбора и, следовательно, на приспособленности генотипов. Эти особенности сказываются на выживаемости, скорости развития, успешности спаривания, плодовитости и т.п., т.е. на величинах, называемых компонентами приспособленности. Важнейшими компонентами являются выживаемость и плодовитость. Другие компоненты могут рассматриваться самостоятельно или включаться в две основные.

Математические модели естественного отбора были описаны Райтом и Фишером. Простейшая модель – популяция с одной парой аллелей, приспособленность к которой не зависит от других локусов.

Пусть АА, Аа, аа – генотипы популяции, их относительные приспособленности соответственно W11, W12, W22. Частоты генов равны p и q.

Таблица 2*

Генотип АА Аа аа Сумма
Частота гена до отбора, f p2 2pq q2 1
Относительная приспособленность, W W11 W12 W22
Частота гена после отбора, fW W11 p2 2W12pq W22 q2 T
Новая частота генотипа p12 2p1q1 q12 1

* – Т – сумма частот генов после отбора, p1,q1 – новые частоты генов, p1=(p2W11+pqW12)/T, q1=(q2W22+pqW12)/T.

Рассмотрим модели действия естественого отбора.

1. Полная эллиминация рецессивных гомозигот (летальных).

Генетическая приспособленность рецессивных гомозигот равна нулю, т.к. они летальны (либо не доживают до репродуктивного возраста, либо не оставляют потомства). Примером служит болезнь фенилкетонурия.

Таблица 3*

Генотип АА Аа аа Сумма
Частота гена до отбора, f p2 2pq q2 1
Относительная приспособленность, W 1 1 0
Частота гена после отбора, fW p2 2pq 0 T = p2 +2pq
Частота после отбора, до случайного скрещивания 1/(1+q)2 2q/(1+q)2 q2/(1+q)2
Новая частота генотипа p12 2p1q1 q12 1
Нормализованные частоты p2/(p2+2pq) 2pq/(p2+2pq) 0

* – частоты аллелей после отбора: p1=1/(1+q); q1=q2/(1+q).

Количество изменений аллелей за одно поколение будет: Δq=–q2/(1+q). Δq пропорциональна q2 (частоте рецессивных гомозигот), т.е. чем больше частота, тем больше количество изменений. Δq всегда отрицательная величина (или равная нулю), значит значение q уменьшается в результате отбора. Иногда происходит не полная эллиминация, а частичный отбор, т.е. не все особи доживают до репродуктивного возраста и оставляют жизнеспособное потомство.

Введем понятие коэффициент отбора S, W = 1 – S. S пропорциональна снижению воспроизводства генотипа по сравнению с нейтральным, приспособленность которого условно принимается за единицу. Для нейтральных признаков S = 1, для нейтральных – S = 0.

Таблица 4*

Генотип АА Аа аа Сумма
Частота гена до отбора, f p2 2pq q2 1
Относительная приспособленность, W 1 1 1–S
Частота гена после отбора, fW p2 2pq q2(1–S) T=1–Sq2
Нормализованные частоты p2/(1–Sq2) 2pq/(1–Sq2) q2(1–S)/(1–Sq2)
Частота после отбора, до случайного скрещивания p12 2p1q1 q12

* – частоты аллелей после отбора: p1= p/(1–Sq2); q1=q2(1–Sq)/(1–Sq2).

Примером отбора против рецессивных гомозигот служит явление индустриального меланизма, изученное в Англии на бабочках Biston betularia. До середины XIX века эти бабочки имели светло-серую окраску. Затем, в промышленных районах, там, где стволы деревьев постепенно почернели от копоти и сажи, стали появляться темные бабочки. В некоторых местностях темная разновидность почти полностью вытеснила светлую. Светло-серые бабочки гомозиготны по рецессивному аллелю, темные – либо гетерозиготны, либо гомозиготны по доминантному аллелю.

Вытеснение в промышленных районах светлой разновидности Biston betularia темной происходило благодаря избирательному истреблению бабочек птицами: на почерневшей от копоти коре светлые бабочки становились более заметными, в то время как темные были хорошо замаскированы. Бабочек отлавливали, метили и при повторном отлове доля темных бабочек составляла 53%, а светлых – 25%. Посколько плодовитость обеих форм примерно одинакова, можно предположить, что их относительные приспособленности определяются исключительно в выживаемости, обусловленной их неодинаковой уязвимостью для насекомоядных птиц.

2. Отбор против доминантных аллелей.

Это часто встречающийся тип отбора, к нему относятся почти все геномные и доминантные генные мутации.

Отбор против доминантных аллелей идет более эффективно, чем отбор против рецессивных, поскольку доминантные аллели проявляются не только в гомозиготном, но и в гетерозиготном состоянии.

Таблица 5*

Генотип АА Аа аа Сумма
Частота гена до отбора, f p2 2pq q2 1
Относительная приспособленность, W 1–S 1–S 1
Частота гена после отбора, fW p2(1–S) 2pq(1–S) q2 T=1–S+Sq2
Нормализованные частоты p2(1–S)/T 2pq(1–S)/T q2/T
Частота после отбора, до случайного скрещивания p12 2p1q1 q12

* – частоты аллелей после отбора: p1= p(1–S)/T; q1=q(1–pS)/T.

Изменение частоты доминантного аллеля:  p=–(Sq2(1–q))/(1–Sq2), уже за одно поколение отбора частота p уменьшится. Если доминантная аллель летальна, то Δ p = –p и за одно поколение аллель полностью исчезнет из популяции.

3. Отбор в пользу гетерозигот.

Такой отбор происходит, когда обе гомозиготы имеют пониженную приспособленность по сравнению с гетерозиготой (W11W22) и называется сверхдоминированием, или гетерозисом.

Таблица 6*

Генотип АА Аа аа Сумма
Частота гена до отбора, f p2 2pq q2 1
Относительная приспособленность, W 1–S1 1 1–S2
Частота гена после отбора, fW p2(1– S1) 2pq q2(1–S2) T=1–S1 p2–S2q2
Нормализованные частоты p2(1– S1)/T 2pq/T q2(1–S2)/T
Частота после отбора, до случайного скрещивания p12 2p1q1 q12

*– частоты аллелей после отбора: p1= (p– p2S1)/(1–S1 p2–S2q2); q1= (q – q2 S2)/(1–S1 p2–S2q2).

Δ q=pq(pS1– qS2)/(1–S1 p2–S2q2); при положительных значениях частота рецессивного признака увеличивается, при отрицательных – уменьшается, до тех пор. пока не достигнется состояние равновесия, т.е. pS1=qS2. Равновестные частоты равны q*= S1/(S1+ S2), p*=S2/(S1+ S2). Равновесия при отборе в пользу гетерозигот – устойчивое, оно определяется коэффициентом отбора.

Хорошо известным примером сверхдоминирования может служить серповидноклеточная анемия, широко распространенная в некоторых странах Африки и Азии. Нормальный гемоглобин обозначается HbAHbA, аномальный – HbSHbS. Возможно наличие трех вариантов генотипов: HbAHbA (1– S1), HbAHbS (1), HbSHbS (1–S2). S2 близок к единице, т.к. HbSHbS редко выживают. Приспособленность HbAHbA близка к единице в районах, где малярия не наблюдается. Из этого следует, что q*= S1/(S1+ S2) приблизительно равна S1/(1+S1).

Несмотря на то, что большинство людей с генотипом HbSHbS погибают до достижения половозрелости, частота аллеля HbS достигает в ряде районов земного шара