Вузол підготовки сировини
стабілізації:
де – коефіцієнт 0,85 враховує ре циркулюючий потік, який становить 15% основного потоку.
масовий потік товарного ізомеризату із потоком сірковмісних сполук:
масовий потік бокового погону колони ДІГ:
Кількості сірковмісних сполук що адсорбується
Масовий потік товарного ізомеризату G5 із потоком сірковмісних сполук G7 за формолою:
Зробимо перевірочний розрахунок по матеріальному балансу, який включає тому, щоб вхідні масові потоки були рівні вихідним масовим потокам. Отже, перевірочний розрахунок проводимо за допомогою формули 4.1:
Отже,
як ми бачимо
існує різниця
в
=
.
Це пояснюється тим, що ми прийняли деякі припущення і знехтували водневмісним газом, який є невід’ємною частиною процесу.
Зведемо матеріальний баланс установки в таблицю 4.7.
Таблиця 4.7
Матеріальний баланс установки ізомеризації
Речовини | Вхід, кг/рік | Вихід, кг/рік |
н-парафіни | 50985935 | 4391320,593 |
Ізопарафіни | 4734600 | 111771283,7 |
Ароматичні вуглеводні | 457600 | 2899,305882 |
Нафтени | 14321800 | 13771485 |
Олефіни | 0 | 0 |
Сірковмісні сполуки | 65 | 65 |
Втрати | 0 | 0 |
Разом | 70500000 | 70500000 |
5. Тепловий розрахунок
При розрахунку теплового балансу реактора визначають кількість тепла,що надходить і йде з реакційною сумішшю, витрати тепла на реакцію й тепловтрати через стінку. За даними теплового балансу визначають температуру потоку, що йде, що необхідно для розрахунку наступних апаратур. Почнемо з оцінки тепловтрат , тому що вони мають самостійне значення.
5.1 Розрахунок тепловтрат через стінку
Метою розрахунку є перевірка ефективності ізоляційного матеріалу й визначення зміни температури в реакторі за рахунок тепловтрат . Розрахунок ґрунтується на визначенні коефіцієнта теплопередачі через стінку (kt) і поверхні теплопередачі (St). Кількість тепла,переданого навколишньому середовищу за одиницю часу , становить QT =kt∙St∙∆Tср, (5.1)
де ∆Tср- середня різниця температур реакційної суміші (ТСМ) і зовнішньої температури (ТН).
Значення kt розраховують по відомому співвідношенню
Kt=-1
(5.2)
де -а1 і а2-коєфициєнти теплопередачі від потоку реагуючої суміші до стінки реактора й від стінки до зовнішнього середовища ,а δі і λі- товщина й коефіцієнт теплопровідності і- шару стінки. Стінка реактора звичайно тришарова :внутрішня футеровка (асбоцемент),метал(сталь) ізовнішня ізоляція (азбест). Товщина шару металу визначається тиском у реакторі й становить 3-7мм, товщина ізоляційного й футеровочного шарів близька до 5 мм. Значення λ для сталі ,асбоцемента й азбесту становлять 162, 2,2 i 0,5 кДж/(м∙год∙К) відповідно[2], а1 і а2 розраховують по емпіричних формулах;для режиму промислового реактора вони рівні 36,1 i 1,2 кДж/(м2∙год∙К). Тоді Kt складе:
Kt=)
=0.891 кДж/(м2∙год∙К),
І навіть при максимальної ∆Тср=450 К маємо
Qт=(2πRH+4πR2)∙0.891∙450=2518RH+5036 R2 кДж/год
де R- радіус реактора ,а H-його висота.
При розрахованих нижче розмірах реактора тепловтрати ( Qт) кладе 25.2∙103 кДж/год, що значно менше тепловбирання за рахунок реакції. Співвідношення тепловтрат через стінку й тепловбирання за рахунок реакцій не перевищує 0.005 (0.5%).Це означає ,що промисловий реактор ізолюється досить ефективно .
Розрахуємо тепер,наскільки впаде температура в реакторі за рахунок тепловтрат у навколишнє середовище . Позначимо цю величину ∆Тт. Якщо Go,сро і срur- масові потік і теплоємність вуглеводнів і циркулюючого газу, а α-масове співвідношення циркулюючого газу й вуглеводнів ,то маємо:Qт=(Go∙cpo+Go∙ α∙cpur) ∆Тт
∆Тт=0С
Для величин ,наведених у технологічному розрахунку, маємо ∆Тт< 10С,тобто тепловтрати мало міняють температуру в реакторі, і при розрахунках основного процесу можна вважати промисловий реактор адіабатичним.
Розрахунок кількості тепла ,що надходить і йде з реакційною сумішшю,і теплоти реакції
Кількість тепла потоку реагентів (Qп1) розраховують по масі (Gі) і тепломісткості(qi) компонентів потоку на виході при температурі То:
Qп1=∑ Gі qi=(∑ Gі срі)То(5.3)
Gі наведені в таблицях 4.1 і 4.2; величина qi і срі визначають як функції критичних параметрів (Тк і рк) і масових часток (Z‴1,) компонентів:
qi=f1(Tk1,pk1,Z‴1) на основі таблиць і номограм.
Спочатку розраховують(Qn1) для вхідного потоку (приблизно 50∙106кДж/год
[2]). Потім,задаючись теплотою реакції на одиницю маси сировини, розраховують тепловіділення за рахунок реакції(Qр).Оскільки тепловтрати через стінку відносно малі, приймаємо :
Qn2= Qn1+ Qр(5.4)
Qр=
Тут Qn2-кількість тепла, виносимо газо-продуктивим потоком. Знаючи Qn2,далі підбором визначають температуру вихідного потоку (Тв), для якої виконується умова : Qn2=(∑ Gі срі)Тв.
Тв=
0С
Такий метод визначення Твє наближеним не враховуюче одночасне протікання ізомеризації й гідрокрекінгу.
6. Технологічний розрахунок адсорбера блоку підготовки сировини установки ізомеризації
Як було зазначено вміст сірки в сировині для подачі її в реактор повинен бути менш ніж 0,1 ppm [див. розділ 1].
Розрахуємо об’ємну подачу рідкої сировини:
(6.1)
де GС — масова витрата сировини, вона складає 70.5·106 кг/рік [див. вихідні дані];
ρ — густина рідкої сировини, вона дорівнює 677 кг/м3 [див. розділ №3];
8000 – кількість годин на протязі одного року.
Для розрахунку адсорбера потрібні характеристики адсорбенту АКГ-981, які приведені нижче [9]:
– насипна густина ρн: 810 кг/м3;
– пористість шару гранул ε=0,38;
– питома поверхня f= 370,37 м2/м3.
Наступні характеристику будуть представлятись по мірі розрахунку.
Оскільки проектується адсорбер вхід сировини, в який здійснюється зверху,
можна не хвилюватися про швидкість потоку в апараті, оскільки винесення адсорбенту під дією швидкості винесення неможливе.
Але швидкість повинна бути в розумних межах, оскільки при її збільшенні збільшується гідравлічний опір в квадратній пропорційності.
Тривалість
Т повного циклу
в адсорбері
с нерухомим
зернистим шаром
адсорбенту
(як і в другому
адсорбері
періодичної
дії) складається
із часу адсорбції
,
часу десорбції
,
на протязі
якого через
адсорбент
будуть продувати
регенеруючий
агент, і часу
охолодження
адсорбенту
(також в цей
час може ввійти
час сушки, але
в нашому випадку,
дану операцію
проводити не
доводиться)
.
Величини
і
визначаються
дослідницьким
методом, а їх
сума складає
тривалість
допоміжних
операцій:
.
(6.2)
Таким чином:
(6.3)
Оскільки в нас непереривний процес на установці, тому ми проводимо адсорбцію з декількох адсорберів періодичної дії, в яких поперемінно відбувається адсорбція і допоміжні операція (десорбція і охолодження). Для здійснення описаного вище візьмемо два адсорбера. Для роботи таких установок необхідне виконання наступної умови:
.
(6.4)
Умовимось діаметром адсорбера D=1,4 м, і розрахуємо фіктивну швидкість суміші:
(6.5)
де V – об’ємна подача сировини (формула 6.1), м3/с;
S – площа перерізу адсорбера, м2.
Площа перерізу S:
,
Отже,
W0=
м/с
Відомо, що час який затрачується на десорбцію 1 м3 адсорбенту, при фіктивній швидкості 0,08 м/с регенеруючого агенту з температурою 300 оС, становить 15,8 години [9].
По ізотермі адсорбції рис. 6.1 при Y1=0,0000105 кг/кг сировини [див. розділ №3], рівноважна концентрація сірковмісних сполук і вологи в адсорбенті буде Х*=0,024 кг/кг адсорбенту [9]. Приймаємо насичення начального перерізу шару Хн=0,98·Х*=0,98·0,024=0,02352 кг/кг адсорбенту.
Визначаємо тривалість насищення шару адсорбенту висотою 1 м по рівнянню (коефіцієнт поглинальної дії):
k==
581843.33 с/м (6.6)
Знаходимо
час
,
на протязі
якого насичується
початковий
переріз шару.
Використовуючи
формулу:
,
(6.7)
де К – коефіцієнт масопередачі, кг/м2·с·кг/кг;
f – питома поверхня адсорбенту, м2/м3.
Інтеграл правої частини рівняння (6.7) визначається графічно і представляє собою
площу,
обмежену кривою
,
абсцисою ХН
і крайніми
ординатам.
Для
рішення інтегралу
приймемо ряд
похідних значень
Х (менше Хн=0,02352
кг/кг адсорбенту).По
ізотермі адсорбції
рис. 6.1 визначаємо
значення точок
рівноважної
концентрації
,
які відповідають
кожній величині
Х, і будуємо
графік залежності
від Х на основі
отриманих
даних, приведених
в таблиці 6.1:
Таблиця 6.1
Точки рівноважної концентрації
Х, кг/кг | Y*·105, кг/кг | Y1·105, кг/кг | (Y1 – Y*)·105 | 1/(Y1 – Y*)·10-5 |
0 | 0 | 0,00105 | 0,00105 | 952,38 |
0,00452 | 0,0001092 | 0,00105 | 0,0009408 | 1062,92 |
0,00952 | 0,0002247 | 0,00105 | 0,0008253 | 1211,68 |
0,01352 | 0,0003171 | 0,00105 | 0,0007329 | 1364,44 |
0,01852 | 0,0004326 | 0,00105 | 0,0006174 | 1619,69 |
0,02352 | 0,000945 | 0,00105 | 0,000105 | 9523,80 |
Рис. 6.1 Ізотерма адсорбції
Площа обмежена кривою, віссю абсцис і крайніми ординатами, проведеними (див рис. 6.2), складає 405,7 см2. Враховуючи масштаб будування графіка:
.
Рис
6.2 Графік залежності
від Х
Тепер визначимо коефіцієнт масопередачі від сировинної суміші до адсорбенту при температурі 80 оС, оскільки саме при цій температурі буде працювати адсорбер [див. розділ 1], по формулі:
(6.8)
Визначимо еквівалентний діаметр шару адсорбенту:
(6.9)
Масова швидкість сировинної суміші складає:
(6.10)
де
– густина сировинної
суміші, кг/м3
[див. розділ 3]
Визначаємо критерій Рейнольдса:
(6.11)
де
– в’язкість
сировинної
суміші (1,69·10-3Па·с)
[12].
Коефіцієнт дифузії сірковмісних сполук при 0 оС складає:
Визначимо коефіцієнт дифузії сировинної суміші при тиску Р=1,25 МПа:
(6.12)
Знаходимо значення дифузійного критерію Прандтля:
(6.13)
В відповідності знайдемо дифузійний критерій Nu’:
звідки,
або
.
Час
по рівнянню
(6.7):
Висота одиниці переносу складає
.
Визначимо число одиниць переносу графічним методом, допускаючи концентрацію сірковмісних сполук в кінці шару Хс=0,001 кг/кг адсорбенту.
Визначаємо
значення
в границі зміни
Х від Хн=0,02352
кг/кг адсорбенту
до Хс=0,001
кг/кг адсорбенту
(табл. 6.2).
Методом графічного інтегрування визначаємо за рис. 6.3 число одиниць переносу.
Таблиця 6.2
До
розрахунку
X | X* | X*-X |
|
0,001 | 0,0025 | 0,0015 | 666,66 |
0,005 | 0,0165 | 0,0115 | 86,95 |
0,009 | 0,0189 | 0,0099 | 101,01 |
0,017 | 0,0246 | 0,0076 | 131,58 |
0,021 | 0,0252 | 0,0042 | 238,09 |
0,0235 | 0,0245 | 0,001 | 1000 |
Рис.
6.3 Графік залежності
від Х
Число одиниць переносу становить: n=5,1.
Знаходимо
висоту Но
шару адсорбенту,
який працює
до моменту
:
(6.14)
Визначаємо тривалість адсорбції при умові, що висота шару адсорберу буде становити 2,1м:
τ = τ0 + κ (Η - Η0)=109,2+315538,12∙(2,1-0,0765)=635223с
або 7 діб і 9 годин
Розрахуємо об’єм адсорбенту:
.
Час десорбції буде становити:
τ доп =15,8∙3,2=50,56 години або 2 доби та 2 години
Отже,
умова
виконалась.
Втрату напору розраховують по формулі:
;
(6.15)
де ε — порозність шару;
и — лінійна швидкість руху потоку, який фільтрується через шар адсорбенту, м/с;
μ — динамічна в’язкість, Пас;
d — середній діаметр зерен адсорбенту, дорівнює 0,004 м;
ρ — густина рідини, кг/м3;
g — прискорення сили тяжіння, кг/с2.
Середній діаметр часток адсорбенту становить d = 410-3м.
Таким чином
ΔР = Н 1874,4 = 2,1· 1874,4= 3,9 кПа.
Таким чином, втрата напору адсорбенту не значна.. Тому до проектування приймаємо реактор циліндричної форми з висотою і діаметром 2,1 та 1,4 м відповідно по ГОСТ 9617-67.
7. Конструктивний розрахунок адсорбера блоку підготовки сировини установки ізомеризації
7.1.1 Розрахунок корпуса апарата на міцність
Розрахунок проведений за ДСТ 14249-80 «Посудини й апарати. Норми й методи розрахунку на міцність.
7.2.1.1 Визначення товщини оболонки корпуса
,
(7.1)
де:
=1
- коефіцієнт
міцності звареного
шва;
=137
МПа –
допустима напруга для сталі 12 ХМ при температурі 3500С;
С=3 мм – збільшення до розрахункової товщини оболонки для компенсації корозії;
С1=0 - додаткове збільшення до розрахункової товщини стінки. Приймаємо товщину стінки оболонки з урахуванням негативного відхилення в сортаменті на листову сталь за ДСТ -74 S=6 мм.
7.2.1.2 Визначення товщини стінки еліптичного днища
(7.2)
де:
R- радіус кривизни у вершині днища (для стандартних еліптичних днищ R=D).
Приймаємо товщину днища з урахуванням утоненя листа при штамповці S1=6 мм.
7.2.2 Розрахунок зміцнення отворів
Розрахунок проведений по ДСТ 26-2045-77 «Посудини й апарати норми й методи розрахунку зміцнень отворів».
7.2.2.1 Найбільший припустимий діаметр
Найбільший припустимий діаметр, що, одиночного отвору, що не вимагає додаткового зміцнення в днище:
,
(7.3)
де: К1=1,0; К2=0,4 – коефіцієнти, обумовлені по ДСТ 26-2045-77;
sR=s-c-c1=4,39 мм – розрахункова товщина стінки днища мм.
(7.4)
де: м - відстань від центра зміцнювального отвору до осі днища.
Розглянемо типи отворів:
а) центральне розташованя (горловини корпуса адсорберу) га= 0 см;
в) зміщений від осі штуцер вивантаження адсорбенту гв=40 см.
DRa=2D=2·140=280 см.
тобто потрібне зміцнення штуцерів-горловин верхньої й нижньої. Для верхнього й нижнього днищ для подальшого розрахунку визначаємо найбільший допустимий діаметр отвору, що не вимагає додаткового зміцнення, при відсутності надлишкової товщини стінки:
.
(7.5)
7.2.3 Визначення тиску регенерації, пробного тиску й пускового тиску при мінусовій температурі
Розрахунок
тиску, що допускає,
при режимі
регенерації
вводиться при
конічному
переході діаметром
500 маємо Т=316 оС,
то для сталі
12XM, 08X18H10T
(7.6)
де f –
коефіцієнт
форми днища
визначається
за ДСТ 14249-73 в залежності
від кута
й відношення
.
f=1,2.
.
(7.7)
Приймаємо робочий тиск при регенерації
.
Визначаємо пробне тиску при гідровипробуванні на підприємство-виготовлювача:
(7.8)
де
,
-
допустиме
напруження,
що для сталі
12XM при T=20 o і при
T=350 o.
.
Приймаємо
.
Пусковий тиск при мінусовій температурі максимальна величина тиску середовища в апарату при пуску й обпресуванні холодного апарата.
Приймаємо
.
7.2.4 Розрахунок кришки на штуцері вивантаження адсорбенту
Матеріал кришки - сталь 15X5M, прокладки 08X18H10T.
Допуск
напруги при
T=350 o
.
Збільшення
для компенсації
корозії С=0,3 мм.
Dсн=275 мм - b= 16 мм
Dз= 360 мм - h2=11 мм
Розрахунок товщини кришки.
(7.9)
Де
-
розрахункова
товщина стінки
кришки.
k – коефіцієнт, що залежить від конструкції зміцнення кришки.
ko – коефіцієнт ослаблення кришки отвором.
-
розрахунковий
діаметр кришки,
що дорівнює
середнім діаметрам
прокладки.
f – коефіцієнт міцності зварених швів .
Величина k визначається за ДСТ 1429 – 80
(7.10)
де
-
болтове навантаження,
H.
-
рівнодіюча
внутрішнього
тиску на кришку,
Н.
де bo – ефективна ширина прокладки:
m – прокладочний коефіцієнт для сталі 08X18H10T m=6,5.
Тоді
;
,
тому що отвір
для болтів у
розрахунку
не приймають.
Виконавча товщина кришки
Приймаємо S1=75мм.
Товщина кришки в місці ущільнення
(7.11)
тут
за ДСТ 14249- 80
і k2 =0,45.
Прийнята товщина в місці ущільнення
.
Визначаємо напруги в кришці при гідровипробуванні пробним тиском
(7.12)
де Pn- 6,6 МПа – тиск гідровипробування.
де
-
допускає напруження, що, при гідровипробуванні;
-
боковий вівтар плинності стали 15X5M при T=20o.
7.2.5 Розрахунок температури зовнішньої стінки адсорберу
Тепловий визначається рівнянням:
(7.13)
температура на границі покривного й теплоізоляційного шарів.
(7.14)
Температура зовнішньої стінки
(7.15)
Розглянемо два режими
режим адсорбції
режим регенерації
У результаті температура стінки адсорберу не перевищує 100 оС при відсутності порушення цілісності ізоляції.
ВИСНОВКИ
Бензин відіграє важливу роль у всіх галузях, і дивлячись на цей факт потрібно врахувати також те, що вимоги до нього, як до продукту, а також процесу його одержання, із часом, ростуть. Ми знаємо, що в нафті перебувають шкідливі домішки. Від цих домішок потрібно позбавлятися, наприклад, бензол, толуол, ксилоли, сірка. А в минулому октановим числом в основному підвищувалося за рахунок ароматичних вуглеводнів. Тому в цей час підвищення октанового числа бензину виробляється не в результаті збільшення в ньому бензолу, а безпосередньо ізомеризацією нормальних парафінів.
В результаті виконання даного курсового проекту було вивчено технологію очищення нафтових фракцій від сіркових сполук і осушення від вологи, апаратурне оформлення цього процесу, ознайомлення з характеристиками сировини, матеріалів, з теоретичними основами процесу.
Сутність вивчення проекту полягала в очищенні бензинової фракції НК-85 від сірковмісних сполук і осушення від вологи. Відповідно в проекті розроблена технологічна схема блоку підготовки сировини установки ізомеризації, приведені розрахунки обладнання.
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ
Ю.И. Дытнерский. Процессы и аппараты химической технологии: Учебник для вузов. Изд. 2-е. В 2-х