Реферат: Динамические и статистические законы


Министерство общего и профессионального образования.

Государственный Университет Управления.

Реферат

        на тему:

“Динамические и статистические законы”

 Выполнена студентом

Коноваловым Александром Владимировичем.

     Студенческий билет № Э-52-99

     Группа №2

     Дата выполнения 10.12.1999

Руководитель Евгений Васильевич Ергопуло.

 

Аннотация.

    В этой работе речь пойдет о закономерностях, деление которых приводит к появлению статистических и динамических. Суть их заключается и подчиняется так называемой причинно-следственной связи, основоположником и представителем которой был Пьер Симон Лаплас. Каким образом она(связь) здесь выступает поговорим позже. Автор попытается показать суть и динамических и статистических закономерностей, причем грань различия между ними будет показана не размывчатая, а четкая и ясная.

   Оглавление:

1.  Введение                                                    стр.4

2.  Детерминизм Лапласа                            стр.4

3.  Динамические закономерности            стр.6

4.  Статистические закономерности

  • Вероятностный характер микропроцессов стр.12
  • Статистическая физика                                  стр.14

5.  Заключение                                              стр.18

6.  Литература                                               стр.19

Введение.

     Современная физика изучает огромнейшее количество различных процессов в природе. Не все из них поддаются изучению и объяснению. Безусловно многое человеку еще не известно, а если известно то может быть не объяснено сейчас. Тем не менее наука идет вперед и общие (классические) концепции существования природы известны уже сейчас.

     Процессы протекающие вокруг нас не всегда поддаются точному объяснению. Как раз на этом этапе перед человеком и встала проблема создания таких моделей и методов познания, которые бы смогли объяснить непознанное. Несомненно в решении этой нелегкой задачи главную роль сыграло не только физическое толкование и применение физики, а пришлось обращаться к математики, к прикладной математики и ряду других точных наук. Результат? Постепенное постижение истины.

     Как уже говорилось ранее в этой работе речь пойдет о динамических и статистических законах, на которых сегодня и держится современная картина мира. Такое деление законов еще раз подтверждает что непознаное, не точно исчисляемое и объясняемое постепенно становится явью с помощью новых концепций. Появление статистических методов в познании, а также развитие теории вероятностей ¾ вот новое оружие современного ученого.

    

Детерминизм Лапласа.

    

     Причинное объяснение многих физических явлений, т. е. ре­альное воплощение зародившегося еще в древности принципа причинности в естествознании, привело в конце XVIII — начале XIX вв. к неизбежной абсолютизации классической механики. Возникло философское учение — механистический детерми­низм, классическим представителем которого был Пьер Симон Лаплас (1749—1827), французский математик, физик и философ. Лапласовский детерминизм выражает идею абсолютного детерми­низма — уверенность в том, что все происходящее имеет причи­ну в человеческом понятии и есть непознанная разумом необхо­димость.      Суть его можно понять из высказывания Лапласа:

     Современные события имеют с событиями предшествующими связь, осно­ванную на очевидном принципе, что никакой предмет не может начать быть без причины, которая его произвела... Воля, сколь угодно свободная, не мо­жет без определенного мотива породить действия, даже такие, которые счи­таются нейтральными... Мы должны рассматривать современное состояние Вселенной как результат ее предшествующего состояния и причину после­дующего. Разум, который для какого-нибудь данного момента знал бы все силы, действующие в природе, и относительное расположение ее составных частей, если бы он, кроме того, был достаточно обширен, чтобы подвергнуть эти данные анализу, обнял бы в единой формуле движения самых огромных тел во Вселенной и самого легкого атома; для него не было бы ничего неяс­ного, и будущее, как и прошлое, было бы у него перед глазами... Кривая, описываемая молекулой воздуха или пара, управляется столь же строго и определенно, как и планетные орбиты: между ними лишь та разница, что на­лагается нашим неведением.

     Дальнейшее развитие физики показало, что в природе могут происходить процессы, причину которых трудно определить. Например, процесс радиоактивного распада происходит случайно. Подобные процессы происходят объективно случайно, а не потому, что мы не можем указать их причину из-за недостатка наших знаний. И наука при этом не перестала развиваться, а обогатилась новыми законами, принципами и концепциями, которые показывают ограниченность классического принципа — лапласовского детерминизма. Абсолютно точное описание всего прошедшего и предсказание будущего для колоссального много­образия материальных объектов, явлений и процессов — задача сложная и лишенная объективной необходимости. Даже в самом простейшем случае классической механики из-за неустранимой неточности измерительных приборов точное предсказание со­стояния даже простого объекта — материальной точки — также нереально.

  

Динамические закономерности.

     Физические явления в механике, электромагнетизме и теории относительности в основном подчиняются, так называемым динамическим закономерностям. Динамические законы отражают однозначные причинно-следственные связи, подчиняющиеся детерминизму Лапласа.



Причина                      Следствие

     Динамические законы – это законы Ньютона, уравнения Максвелла, уравнения теории относительности.

Классическая механика Ньютона.

     Основу механики Ньютона составляют закон инерции Галилея, два закона открытые Ньютоном, и закон Всемирного тяготения, открытый также Исааком Ньютоном.

1. Согласно сформулированному Галилеем закону инерции, тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не выведет его из этого состояния.

2. Этот закон устанавливает связь между массой тела, силой и ускорением.

3. Устанавливает связь между силой действия и силой противодействия.

4. В качестве IV закона выступает закон всемирного тяготения.

Два любых тела притягиваются друг к другу  с силой пропорциональной массе сил и обратно пропорциональной квадрату расстояния между центрами тел.

Уравнения Максвелла.

     Уравнения Максвелла – наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. В учении об электромагнетизме они играют такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле связано с порождаемым им магнитным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом – они образуют единое электромагнитное поле.

     Из уравнений Максвелла следует, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.

    

Уравнения теории относительности.

     Специальная теория относительности, принципы которой сформулировал в 1905 г. А.Эйнштейн, представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно. Специальная теория часто называется релятивистской теорией, а специфические явления, описываемые этой теорией - релятивистским эффектом (эффект замедления времени).

     В основе специальной теории относительности лежат постулаты Эйнштейна:

  1. принцип относительности: никакие опыты (механические, электрические, оптические), проведенные в данной инерциальной системе отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы к другой;
  2. принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения света или наблюдателя и одинакова во всех инерциальных системах отсчета.

     Первый постулат, являясь обобщением механического принципа относительности Галилея на любые физические процессы, утверждает таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно этому постулату, все инерциальные системы отсчета совершенно равноправны, т. е. явления механические, электродинамические, оптические и др. во всех инерциальных системах отсчета протекают одинаково.

     Согласно второму постулату, постоянство скорости света в вакууме – фундаментальное свойство природы.      

     Общая теория относительности, называемая иногда теорией тяготения – результат развития специальной теории относительности. Из нее вытекает, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени может изменятся от одной области к другой в зависимости от концентрации масс в этих областях и их движения.

 Статистические закономерности.

     При попытке использовать однозначные причинно-следственные связи и закономерности к некоторым физическим процессам обнаружилась их недееспособность. Появились многозначные причинно-следственные связи, подчиняющиеся вероятностному детерминизму.

                          




                               Следствие Причина              Следствие                               Следствие



                                  Причина Следствие               Причина                                   Причина

    

     Статистические закономерности и законы используют теорию вероятностей. Это наука о случайных процессах. В этих рамках следует пояснить следующие понятия:

     Достоверные события, невозможные события и промежуточные между достоверными и невозможными случайные события. 

    

     Количественно случайные события оцениваются при помощи вероятности:

1. Статистическая вероятность.


     Достоверные и невозможные события можно рассматривать как частные случаи случайных событий:

     Вероятность достоверна  = 1

     Вероятность невозможна = 0

    

2. Классическая вероятность.

Этой вероятностью называется отношение числа элементарных событий к общему числу равнозначных событий.

Например рассмотрим куб. У него 6 граней. 6 – это число равнозначных событий. Появление определенной грани – это элементарное событие (в данном случае 1). Следовательно:

 

  P = 5

    

     Приведем пример статистического закона, который описывает физические явления, наблюдаемые в физических средах, состоящих из большого числа частиц:

    

Закон распределения Максвелла.

Этот закон устанавливает зависимость вероятности в распределении скорости движения молекул газа от скорости движения молекул, причем с вероятной скоростью движется большинство молекул.

  

Распределение Гаусса.

Или еще функция Гаусса – это закономерность, подчиняющаяся результатам измерений.



                        x




Sx =                           ¾  среднеквадратичная ошибка.

                          n

 

     

             X2

S =  ∫f(x)dx       ¾  вероятность того, что полученый 

            X1                                         результат лежит в пределах от X1                    

                                                  до  X2.

    

 Вероятностный характер микропроцессов.  

     Вероятностные процессы также наблюдаются в поведении отдельновзятых микрочастицах: 

   Y - волновая функция. ( де Бройля ).

Необходимость вероятностного подхода к описанию микро­частиц — важная отличительная особенность квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятно­сти, т. е. считать, что вероятность обнаружить микрочастицы в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля неверно уже хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла.

Чтобы устранить эти трудности, немецкий физик М. Борн (1882—1970) в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, назван­ная волновой функцией. Описание состояния микрообъекта с по­мощью волновой функции имеет статистический, вероятност­ный характер:

квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в данный момент времени в определенном, ограниченном объеме.

                   dP


       /Y/ =                   ¾  вероятность обнаружения

                  dV                 частицы в данной точке     

                                                                 пространства.

Статистическая физика.

     Раздел физики, изучающий закономерности процессов, наблюдающихся в макроскопических телах (физические системы, состоящие из большого числа взаимодействующих частиц).

Статистическая механика.

     К концу XIX в. была создана последовательная теория поведения больших общностей атомов и молекул – молекулярно-кинетическая теория, или статистическая механика. Многочисленными опытами была доказана справедливость этой теории.

     Процессы, изучаемые молекулярной физикой, являются

результатом совокупного действия огромного числа молекул.

Поведение громадного числа молекул анализируется с помощью

статистического метода, который основан на том, что свойства макроскопической системы в конечном результате определяются свойствами частиц систем, особенностями их движения и усредненными значениями кинетических и динамических характеристик этих частиц (скорости, энергии, давления и т. д.).         Например, температура тела определяется скоростью беспорядочного движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, то она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Макроскопические характеристики тел имеют физический смысл лишь в случае большого числа молекул.

     После создания молекулярной физики термодинамика не ут­ратила своего значения. Она помогает понять многие явления и с успехом применяется при расчетах многих важных механиче­ских устройств. Общие законы термодинамики справедливы для всех веществ, независимо от их внутреннего строения.

     Однако при расчете различных процессов с помощью термодинамики многие физические параметры, например теплоемко­сти тел, необходимо определять экспериментально. Статистиче­ские же методы позволяют на основе данных о строении веще­ства определить эти параметры. Но количественная теория твер­дого и особенно жидкого состояния вещества очень сложна. По­этому в ряде случаев простые расчеты, основанные на законах термодинамики, оказываются незаменимы.

     В настоящее время в науке и технике широко используются как термодинамические, так и статистические методы описания свойств микросистемы.

Термодинамика.

  1. Первое начало термодинамики.

     Количество теплоты ∆Q, сообщенное телу, идет на увеличение его внутренней энергии  ∆U и на совершение телом работы ∆A, т. е.

Q = ∆U + ∆A

     Всякая представленная самой себе система стремится перейти в состояние термодинамического равновесия, в котором тела покоятся друг относительно друга, обладая одинаковыми температурами и давлением. Достигнув этого состояния, система сама по себе из него не выходит. Значит все термодинамические процессы, приближающиеся к тепловому равновесию, необратимы.

  1. Второе начало термодинамики.

     Сущность второго начала термодинамики составляет утверждение о невозможности получения работы за счет энергии тел, находящихся в термодинамическом равновесии.

 Окружающая нас среда обладает значительными запасами тепловой энергии. Двигатель, работающий только за счет энер­гии находящихся в тепловом равновесии тел, был бы для прак­тики вечным двигателем. Второе начало термодинамики исклю­чает возможность создания такого вечного двигателя.

Необратимость тепловых процессов имеет вероятностный характер. Самопроизвольный переход тела из равновесного со­стояния в неравновесное не невозможен, а лишь подавляюще маловероятен. В конечном результате необратимость тепловых процессов обусловливается колоссальностью числа молекул, из которых состоит тело.

Молекулы газа стремятся к наиболее вероятному состоянию, т. е. состоянию с беспорядочным распределением молекул, при котором примерно одинаковое число молекул движется вверх и вниз, вправо и влево, при котором в каждом объеме находится примерно одинаковое число молекул, одинаковая доля быстрых и медленных молекул в верхней и нижней частях какого-либо сосуда. Любое отклонение от такого беспорядка, хаоса, т. е. от равномерного и беспорядочного перемешивания молекул по местам и скоростям, связана с уменьшением вероятности, или представляет собой менее вероятное событие. Напротив, явле­ния, связанные с перемешиванием, с созданием хаоса из поряд­ка, увеличивают вероятность состояния. Только при внешнем воздействии возможно рождение порядка из хаоса, при котором порядок вытесняет хаос. В качестве примеров, демонстрирую­щих порядок, можно привести созданные природой минералы, построенные человеком большие и малые сооружения или про­сто радующие глаз своеобразные фигуры.

     Количественной характеристикой теплового состояния тела является число микроскопических способов, которыми это со­стояние может быть осуществлено. Это число называется статистическим весом состояния; обозначим его буквой W. Тело, пре­доставленное самому себе, стремится перейти в состояние с большим статистическим весом. Принято пользоваться не самим числом W, а его логарифмом, который еще умножается на посто­янную Больцмана k . Определенную таким образом величину

S = k lnW

называют энтропией тела.

Нетрудно убедиться в том, что энтропия сложной системы равна сумме энтропии ее частей.

Закон, определяющий направление тепловых процессов, можно сформулировать как закон возрастания энтропии:

для всех происходящих в замкнутой системе тепловых процес­сов энтропия системы возрастает; максимально возможное значе­ние энтропии замкнутой системы достигается в тепловом равно­весии:

S 0

     Данное утверждение принято считать количественной формулировкой  второго  закона  термодинамики,  открытого Р.Ю.Клаузиусом (его молекулярно-кинетическое истолкование дано Л.Больцманом).

     Идеальному случаю — полностью обратимому процессу замкнутой системы — соответствует не изменяющаяся энтропия. Все естественные процессы происходят так, что вероятность со­стояния возрастает, что означает переход от порядка к хаосу. Значит, энтропия характеризует меру хаоса, которая для всех естественных процессов возрастает. В этой связи закон о невоз­можности вечного двигателя второго рода, закон о стремлении тел к равновесному состоянию получают свое объяснение. По­чему механическое движение переходит в тепловое? Да потому, что механическое движение упорядочено, а тепловое беспоря­дочно, хаотично.

      

Заключение.

     В заключении нужно сказать, что из выше сказанного и описанного все законы и принципы применяются сейчас в современной физике, космологии, а также в развивающемся сейчас естествознании и в ряде других наук, изучающих природу в целом.

     Также нельзя утверждать что статистические законы более точные и более применимые в описании явлений вокруг нас по сравнению с динамическими закономерностями и принципами. Ни в коем случае, вед каждая из предложенных к рассмотрению совокупность законов рассматривает абсолютно не идентичные процессы, да и протекают они (процессы) совершенно по разному. Поэтому и произошло такое разделение на две составные части.

    

      

     Литература.

1.   Е.В. Ергопуло,   Лекции по КСЕ.

2.   Карпенков С.Х. Концепции современного    естествознания. М.: 1997

3.   Физическая энциклопедия.

4.    Р. Фейнман.  Характер физических законов.

Версия для печати