Читайте данную работу прямо на сайте или скачайте
Комплексные числа
Брянский городской лицей № 1
Учебно-исследовательская работа
по математике на тему:
Комплексные числа
Выполнил
ученик 10 физико-
математического класса
Петрухин Вячеслав
Учитель: Тюкачева О.И.
Брянск, 2003
Оглавление:
1.Комплексные числ 3
2.Свойства операций над комплексными числами 3
3. Комплексная плоскость 3
4. Модуль комплексного числ 4
5. Геометрический смысл сложения, вычитания и модуля разности двух комплексных чисел 5
6. Аргументы комплексного числ 5
7.Алгебраическая и тригонометрическая формы. комплексного числ 6
8. множение и деление комплексных чисел в тригонометрической форме 8
9. Возведение в степень и извлечение корня 8
10.Квадратные уравнения 10
11.Использованная литератур 14
В элементарной математике изучаются действительные числа. С начала в процессе счёта возникает так называемый натуральный ряд чисел 1, 2,Е n,Е В арифметике вводятся действия сложения и множения над натуральными числами. Что де касается операций вычитания и деления, то они же оказываются не всегда возможными во множестве натуральных чисел.
Та же потребность измерения величин и проведения таких операций, как извлечения корня, решение алгебраических равнений, приводит к дальнейшему расширению запаса рассматриваемых чисел: появляются иррациональные и, наконец, комплексные числа.
1.Комплексные числа
Комплексными числами называются выражения вида a + ib, где a и b - любые действительные числа, i - некоторый символ, для которых вводятся понятия равенства и операции сложения и множения:
) два комплексных числа a + ib и c + id равны тогда и только тогда, когда
a=c и b=d;
б) суммой чисел a + ib и c + id называется число
a + c + i(b +d);
в) произведением чисел a + ib и c + id называется число
ac - bd +i(ad+bc).
Комплексные числа принято обозначать одной буквой (чаще всего буквой z или w). Равенство z= a + ib означает, что комплексное число a + ib обозначено буквой z.
Действительное число a называется действительной частью комплексного числа z = a + ib и обозначается Re z; пишут Re z =a или Re z=aа или Re(a + ib) = a. Число b называется мнимой частью числа z= a +ib и обозначается Im z, пишут Im z = b или Im(a +ib) = b. Символ I называется мнимой единицей.
Заметим, что операции сложения и умножения над числами a+ i0 проводятся так же, как над действительными числами.
Таким образом, отождествив число a + i0 с действительным числом a, получим, что каждое действительное число содержится во множестве комплексных чисел, именно a =a+i0.
Числа вида 0 +ib называю чисто мнимыми и обозначаются ib.
На основании формулы (2) найдём значение выражения i2=ii:
i2 = ii =(0+i1)(0+i1)= -1+i0=-1.
Таким образом,
i2=-1.
2.Свойства операций над комплексными числами.
1. Коммутативность сложения: z1 + z2 = z2 + z1.
2. Ассоциативность сложения (z1 + z2)+z3 = z1 +(z2 + z3)
3. z+0=z.
4. Коммутативность множения: z1 z2= z2 z1.
5. Ассоциативность множения: z3( z1 z2) =z1( z2 z3).
6. Дистрибутивный закон: z1( z2 + z3) =z1 z2 + z1 z3.
7. 1*z=z.
8.
z1 и z2, где z1
, существует такое число z
такое, что z1z = z2. Это число называется частным комплексных чисел z1 и z2 и обозначается
а.Деление на 0
невозможно.
|
|



|
|
|
|
Не менее важной и добной является интерпретация комплексного числа a + ib
как вектор
.
4. Модуль комплексного числа. Модулем комплексного
числа z = a +ib называется длина вектора, соответствующего
этому числу. Модуль обозначается
аили буквой r. Применяя
теорему Пифагора, получим, что
а=
.
Пусть z = a +ib. Число a - ib называется комплексно сопряжённым с числом z = a
+ib и обозначается 
а= a - ib. Заметим, что
=
=
, z
2 + b2=
2 =
2,

Пример 1. Запишите z в алгебраической форме, если
) 


б) 


Пример 2. Запишите решения системы
)а
б)
в алгебраической форме.
Решение:
)


б)
а 

Пример 3.Существуют ли такие действительные числ x и y, для которых числа z1 и z2 являются сопряжёнными
) z1=8x2 - 20i15, z2=9x2 - 4+ 10yi3;
б)z1=4x + y+(1+I)y, z2=8 + ix.
Решение:
) z1=8x2 - 20i15=8x2 + 20i; z2=9x2 - 4+ 10yi3=9x2 - 4 - 10yi;
Используя определение сопряжённых комплексных чисел, получим систему:


откуда такие сопряжённые числ существуют.
б)z1=4x + y + (1+i)y = 4x +2y+yi;
z2=8+ix.
Используя определение сопряжённых комплексных чисел, получим систему:


аоткуда такие сопряжённые числ существуют.
5. Геометрический смысл сложения, вычитания и модуля разности двух комплексных чисел.
|
|
|
z1=a1 + ib1 и z2=a2 + ib2.Им соответствуют векторы с координатами (a1,b1) и (a2,b2). Тогда числу z1+z2=a1 + a2 + i(b1 + b2) будет соответствовать вектор с координатами (a1
+ a2,b1+b2).Таким образом,
чтобы найти вектор, соответствующий сумме комплексных чисел z1 и z2, надо сложить векторы,
отвечающие комплексным числам z1
и z2.

|
|
|
|
|
|
|



z1- z 2 комплексных чисел z1 и z2 соответствует разность векторов, Соответствующих числам z1 и z2.Модуль
адвух комплексных чисел
z1 и z2 по определению модуля есть длина вектора z1-
z 2.Построим вектор, как сумму двух векторов z2
и (- z1).
Получим вектор
, равный вектору
.Следовательно,
аесть длина вектора
,то есть модуль разности двух комплексных чисел есть расстояние между точками комплексной плоскости, которые соответствуют этим числам.
|
|
|



6. Аргументы комплексного числа.
Аргументом комплексного числа z= a + ib
z;
величина гла считается положительной если отсчет производится против часовой стрелки, и отрицательной, если отсчет производится по часовой стрелке.
Для обозначения того факта, что число j является аргументом числа z= a+ ib, пишут j=arg z или j=arg (a+ib).
|
|
|
|
z=0
Ц единственное число, которое определяется заданием только его модуля
С другой стороны, если задано комплексное число, то, очевидно, модуль этого числа всегда определён единственным образом в отличие от аргумента, который всегда определяется неоднозначно: если j - некоторый аргумент числа z,то глы j+2pk,
z.
Из определения тригонометрических функций следует, что если j=arg (a+ib),то имеет место следующая система
аили 
Пример 4. Сколько решений имеет система равнений
)
аб)
в)
Решение:


|
|


найдём модуль1-i:а
.
Заметим, что никакая точка большей окружности не
приближена к меньшей на расстояние, равное 


|

|
i только одной точки меньшей окружности мы получаем что эта точка попадает на
другую окружность.


|
|







|




|
7.Алгебраическая и тригонометрическая формы комплексного числа. Запись комплексного числа z в виде a +ib называется алгебраической формой комплексного числа.
Рассмотрим другие формы записи комплексных чисел. Пусть r-
модуль, j
- какой-либо из аргументов комплексного числа z= a+ ib, то есть r =
j=arg (a+ib). Тогда из формулы (5) следует, что 

Запись комплексного числа в виде
тригонометрической формой.
Для того чтобы перейти от алгебраической формы комплексного числа a+ib к тригонометрической, достаточно найти его модуль и один из аргументов.
Пример 5. Какое множество точек комплексной плоскости задаётся словием
) 
б)
в)
|
д)



|
|
|
|
|


















iа и вправо на 1 поучались бы равноудалёнными от начала координат, откуда
чтобы построить множество точек, довлетворяющих данному словию, мы должны:
1)

2) а влево и на i вверх
|

а -i чем к 2i,
эти точки казаны на рисунке.





|


|
|
i |
|
г) |
![]() |
|
![]() |






|
а это будут точки далённые от начала координат не более чем на 1 и при этом исключая число
0. учитывая второе и третье словие, получим:
|
е) |
![]() |
|||
![]() |
|||
е) Чтобы построить точки, довлетворяющие первому условию, надо сдвинуть точки, далённые на расстояние 1,
на 1 вправо. При этом, учитывая другие словия, получим
искомое множество точек.
Пример
6. Будет ли тригонометрической формой числа 
)
б) 
в) 
Решение:
Тригонометрической формой записи числа
атолько будет выражение а), так как только оно довлетворяет определению тригонометрической формы записи числа(

8. множение и деление комплексных чисел в тригонометрической форме. Пусть

Тогда
модуль и произведение двух комплексных чисел равен произведению модулей сомножителей, сумма аргументов сомножителей является аргументом произведения.
Пусть


Таким образом, модуль частного двух комплексных чисел равен частному модулей делимого и делителя, разность аргументов делимого и делителя является аргументом частого.
9. Возведение в степень и извлечение корня. Формула (6) для произведения двух комплексных чисел может быть обобщен на случай 


а
Отсюда, как частный случай,
получается формула, дающая правило возведение комплексного числа
ав целую положительную степень:
а (8)
Таким образом, при возведении комплексного числа в степень с натуральным показателем его модуль возводится в степень с тем же показателем, аргумент множается на показатель степени.
Формула (8) называется формулойа Муавра.
Число 

аиз числа w (обозначается


Если w=0, то при любом
n равнение
z=0.
Пусть теперь
z и w в тригонометрической форме:


Тогда равнение
апримет вид

Два комплексных числа равны тогда и только тогда, когда равны их модули, аргументы отличаются на число, кратное 2p. Следовательно,

или

Таким образом, все решения уравнения 

В самом деле, придавая числу k в формуле (9)целые значения, отличные от 0, 1, Е, (n-1), мы не получаем других комплексных чисел.
Формула (9) называется второй формулой Муавра.
Таким образом, если
n корней степени n из числа w: все они содержатся в формуле(9).
В частности, если
а равнение
аимеет два корня:

то есть эти корни симметричны относительно начала координат.
Также из формулы (9) нетрудно получить, что если
n-угольника, вписанного в окружность с центром в точке z=0
и радиусом 
Из сказанного выше следует, что символ 
i и-i,или одно, и, если одно, то какое именно.
Пример 7. Запишите в тригонометрической форме:
) 
б)
в)
Решение:
) 

б) Так как 


Так как 



в) Так как 



10.Квадратные равнения. В школьном курсе алгебры рассматривались квадратные равнения
(10)
с действительными коэффициентами a, b, c. Там было показано, что если дискриминант равнения (10) неотрицателен, то решения такого равнения даются формулой

(11)
В случае, если 
Для вывода формулы (11) использовался приём выделения квадрата трёхчлена с последующим разложением левой части на линейные множители:

откуда и получалась формула (11). Очевидно, что все эти выкладки остаются справедливыми и в том случае, когда a, b, c являются комплексными числами, корни равнения отыскиваются во множестве комплексных чисел.
Таким образом, во множестве комплексных чисел равнение

всегда разрешимо. Если 


где под
аподразумеваются все значения корня.
Пример 8. Решить уравнение
) 
б) 
Решение:
) Данное равнение является квадратным.
По формуле корней квадратного уравнения имеем:

Для определения всех значений
аположим


Тогда

и, следовательно, x и y довлетворяют системе

причём x и y действительные числа. Решим систему:
Заметим, что x=0 решением системы не является.
При
:

Решим равнение (*): x4+15x2-16=0 Цквадратное равнение относительно x2, откуда
Вернёмся к системе:

Поэтому

б) Данное равнение является квадратным.
По формуле корней квадратного уравнения имеем:

Для определения всех значений
аположим


Тогда

и, следовательно, x и y довлетворяют системе

причём x и y действительные числа. Решим систему:
Заметим, что x=0 решением системы не является.
При
:

Решим равнение (*): x4-16x2-225=0 Цквадратное равнение относительно x2, откуда
Вернёмся к системе:

Поэтому

Пример 9. Решить уравнение
) 
б) 
Решение:
) Пусть 


Возвращаясь к z, получим

1)

а вторую формулу Муавра, получим:

1)

а вторую формулу Муавра, получим:

Следовательно,

2)

а вторую формулу Муавра, получим:

Следовательно,

б)Преобразуем уравнение:





Заметим,
что
а вторую формулу Муавра, получим:


Пример10. Решите равнение:

Решение:
Решим уравнение как квадратное относительно z2: D=

Пусть z=a+ib, тогда 


Пусть 


Пусть 


Ответ: 
Использованная литература:
- Пособие по математике для поступающих в вузы: пособие/ Кутасов А.Д., Пиголкина Т.С., Чехлов В.И., Яковлев Т.Х. - под редакцией Яковлева Г.Н.-3-е издание М.: Наука, 1998, Глава X.
- Лекции и задачи по элементарной математике / Болтянский В.Г., Сидоров Ю.В., Шабунин М.И., - М.: Наука, 1971. ГлаваIV.





