Алгебра. 9 класс. С углубленным изучением математики. Виленкин Н.Я., Сурвилло Г.С. и др. (2006, 368с.)




7-е изд. - М.: 2006. - 368 с.
Учебник для 9 класса с углубленным изучением математики под редакцией Н.Я.Виленкина полностью соответствует современным образовательным стандартам; содержит весь необходимый текстовый и иллюстрированный материал для изучения курса по основным и углубленным программам; содержит некоторые вопросы, пока не входящие в программу, но представляющие интерес для развития математического мышления.
В настоящем издании глава "Множества" перенесена в 8 класс, а из 8 класса в настоящее пособие перенесены темы: "Делимость многочленов", "Теорема Безу", "Корни многочлена", которые непосредственно связаны с решением целых рациональных уравнений высших степеней. Ранее эти темы в учебном пособии для 8 класса были отмечены звездочкой как необязательные к изучению. Однако в классах с углубленным изучением математики круг решаемых задач значительно шире стандартной задачи "Решить уравнение", поэтому в соответствии с пожеланиями учителей в настоящем издании в главу X "Уравнения, неравенства и их системы" включены темы, связанные с делимостью многочленов, теоремой Безу и ее следствиями.
Особенность этого издания - систематическая демонстрация возможностей курса математики 9 класса при решении важных задач современной экономики.

ОГЛАВЛЕНИЕ
ГЛАВА VIII. ФУНКЦИИ 3
§ 1. Функции. Способы задания функций —
1. Переменные величины —
2. Понятие функции 5
3. График функции 9
4. Способы задания функций 11
5. Кусочное задание функции 16
§ 2. Графики простейших функций 17
6. Линейная функция —
7. Линейные неравенства с двумя переменными 18
8. Функция \х\ 22
9. Функция [х] 25
10. Функция {х} 26
11. Функция sgnx 27
§ 3. Функции х29 — , — и их графики —
12. Функция х2 —
13. Функции — и — 32
§ 4. Преобразование графиков 34
14. Параллельный перенос (сдвиг графика) 35
15. Растяжение и сжатие графика вдоль оси Оу 36
16. Растяжение и сжатие графика вдоль оси Ох 38
17. Графики функций, содержащих знак модуля 39
§ 5. Квадратичная функция и ее график 41
18. Квадратичная функция —
19. Корни квадратичной функции. Общие точки параболы и прямой 45
20*. Зависимость свойств квадратичной функции x2+px + q от коэффициентов р и q 48
21. Примеры зависимостей, выражающихся квадратичной функцией 53
§ 6. Дробно-линейная функция и ее график 54
§ 7. Общие свойства функций и построение графиков 58
22. Четные и нечетные функции —
23. Возрастающие и убывающие функции 62
24. Точки максимума и минимума. Наибольшее и наименьшее значения функции на промежутке 68
25. Чтение графиков функций 78
26. Исследование некоторых рациональных функций и построение их графиков 79
27. График функции — 86
§ 8. Применение свойств квадратичной функции к решению задач на нахождение наибольших и наименьших значений 89
§ 9. Понятие о простейших математических моделях. Функции в экономике 92
Дополнительные упражнения к главе VIII 95
ГЛАВА IX. СТЕПЕНИ И КОРНИ 98
§ 1. Степени и степенная функция —
1. Степени с целыми показателями —
2. Степенная функция 103
§ 2. Корни и степени с рациональными показателями 107
3. Корни с натуральными показателями —
4. Извлечение корней нечетной степени из отрицательных чисел 110
5. Свойства корней из неотрицательных чисел 113
6. График функции ух 117
7. Степени с рациональными показателями 120
§ 3. Степени с рациональными показателями и производственные функции в экономике 127
8. Производственная функция —
9. Производственная функция Кобба — Дугласа 128
10. Изокванты — линии равного выпуска 130
11. Изокосты — линии равной стоимости 132
12. Наименьшие расходы фирмы на приобретение ресурсов при заданном объеме производства 134
Дополнительные упражнения к главе IX 139
ГЛАВА X. УРАВНЕНИЯ, НЕРАВЕНСТВА И ИХ СИСТЕМЫ 143
§ 1. Деление многочленов. Корни многочленов —
1. Деление многочлена на многочлен с остатком —
2. Теорема Безу. Корни многочлена. Схема Горнера 147
3*. Наибольший общий делитель и наименьшее общее кратное многочленов. Алгоритм Евклида 153
§ 2. Уравнения с одной переменной 156
4. Основные определения —
5. Равносильные уравнения. Следствия уравнений 158
6. Целые рациональные уравнения 162
7. Основные методы решения целых рациональных уравнений 164
8. Формулы Виета для уравнений высших степеней 176
9. Дробно-рациональные уравнения 180
§ 3. Системы уравнений с двумя переменными 184
10. Основные определения и методы решения систем уравнений —
11*. Уравнения и системы уравнений с параметрами 191
§ 4. Рациональные неравенства 194
12. Основные определения —
13. Решение целых рациональных неравенств. Метод интервалов . 196
14. Решение дробно-рациональных неравенств 198
15. Доказательство неравенств 201
§ 5. Иррациональные уравнения и неравенства 204
16. Иррациональные уравнения —
17. Иррациональные неравенства 209
18. Графическое решение неравенств и систем неравенств с двумя неизвестными 215
§ 6*. Системы уравнений и рыночное равновесие 218
Дополнительные упражнения к главе X 225
ГЛАВА XI. ПОСЛЕДОВАТЕЛЬНОСТИ 233
§ 1. Числовые последовательности —
§ 2. Метод математической индукции 239
§ 3. Арифметическая прогрессия 245
1. Определение арифметической прогрессии —
2. Сумма п первых членов арифметической прогрессии . . . 248
§ 4. Геометрическая прогрессия 251
3. Определение геометрической прогрессии —
4. Сумма п первых членов геометрической прогрессии .... 256
§ 5. Предел последовательности 259
5. Определение бесконечно малой последовательности .... —
6*. Свойства бесконечно малых последовательностей .... 262
7*. Бесконечно большие последовательности 265
8*. Определение предела последовательности 266
9*. Теоремы о пределах 269
10*. Признак существования предела. Вычисление пределов рекуррентно заданных последовательностей 272
11. Последовательности сумм. Сумма бесконечно убывающей геометрической прогрессии 275
§ 6*. Прогрессии, проценты и банковские расчеты 279
12. Что такое банк —
13. Арифметическая прогрессия и простые проценты 280
14. Геометрическая прогрессия и сложные проценты 282
15. Простейшая модель банковской системы 284
Дополнительные упражнения к главе XI 288
ГЛАВА XII. ЭЛЕМЕНТЫ КОМБИНАТОРИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ 295
§ 1. Основные понятия комбинаторики —
1. Правило суммы и правило произведения 296
2. Размещения 299
3. Перестановки 301
4. Сочетания 303
§ 2. Понятие вероятности события 307
5. Введение —
6. Частота и вероятность. Статистическое определение вероятности события 308
7. Опыты с конечным числом равновозможных исходов . . . 313
8. Исходы и события 316
9. Подсчет вероятностей в опытах с равновозможными исходами (классический подход) 317
10. Операции над событиями и алгебраические действия с вероятностями 325
Ответы 345
Скачать