Биотехнология: достижения и перспективы развития
Вопрос 1. Что такое биотехнология?
Биотехнология — это использование организмов, биологических систем или биологических процессов в промышленном производстве. К отраслям биотехнологии относятся генная, хромосомная и клеточная инженерия, клонирование сельскохозяйственных растений и животных, использование микроорганизмов в хлебопечении, виноделии, производстве лекарств и др.
Вопрос 2. Какие проблемы решает генная инженерия? С какими трудностями связаны исследования в этой области?
Методы генной инженерии позволяют ввести в генотип одних организмов (например,бактерий) гены других организмов (например, человека). Генная инженерия позволила решить проблемы промышленного синтеза микроорганизмами различных человеческих гормонов, например инсулина и гормона роста. Путем создания генетически модифицированных растений она обеспечила появление сортов, устойчивых к холодам, заболеваниям и вредителям. Основной трудностью для генной инженерии является наблюдение и контроль за деятельностью привнесенной извне ДНК. Важно знать, способны ли трансгенные организмы выдерживать «нагрузку» чужеродных генов. Существует также опасность самопроизвольного переноса (миграции) чужеродных генов в другие организмы, в результате чего они могут приобрести нежелательные для человека и природы свойства. Не на последнем месте стоит и этическая проблема: а имеем ли мы право переделывать живые организмы ради собственного блага?
Вопрос 3. Как вы думаете, почему селекция микроорганизмов приобретает в настоящее время первостепенное значение?
Существует несколько причин повышения интереса к селекции микроорганизмов:
- легкость селекции (по сравнению с растениями и животными), которая обусловлена большой скоростью размножения и простотой культивирования бактерий;
- огромный биохимический потенциал (разнообразие осуществляемых бактериями реакций — от синтеза антибиотиков и витами нов до выделения из руд редких химических элементов);
- простота генно-инженерных манипуляций; важно также то, что встроенный в ДНК бактерии ген автоматически начинает работать, поскольку (в отличие от эукариотических организмов) все гены прокариотов активны.
В результате на сегодняшний день существует огромное число примеров использования новых штаммов бактерий на практике: производство продуктов питания, гормонов человека, переработка отходов, очистка сточных вод и др.
Вопрос 4. Приведите примеры промышленного получения и использования продуктов жизнедеятельности микроорганизмов.
С давних времен кисломолочные бактерии обеспечивают приготовление простокваши и сыра; бактерии, для которых характерно спиртовое брожение, — синтез этилового спирта; дрожжи используют в хлебопечении и виноделии.
С 1982 г. в промышленных масштабах получают инсулин, синтезируемый кишечной палочкой. Это стало возможным после того, как при помощи методов генной инженерии ген инсулина человека был встроен в ДНК бактерии. В настоящее время налажен синтез трансгенного гормона роста, который используется для лечения карликовости у детей.
Микроорганизмы участвуют также в биотехнологических процессах по очистке сточных мод, переработке отходов, удалению нефтяных разливов в водоемах, получению топлива.
Вопрос 5. Какие организмы называют трансгенными?
Трансгенными (генетически модифицированными) называют организмы, содержащие искусственные дополнения в геноме. Примером (помимо упомянутой выше кишечной палочки) могут служить растения, в ДНК которых встроен фрагмент бактериальной хромосомы, ответственный за синтез токсина, отпугивающего вредных насекомых. В результате получены сорта кукурузы, риса, картофеля, устойчивые к вредителям и не требующие использования пестицидов. Интересен пример лосося, ДНК которого дополнили геном, активирующим выработку гормона роста. В результате лосось рос в несколько раз быстрее, и вес рыб оказался гораздо больше нормы.
Вопрос 6. В чем преимущество клонирования по сравнению с традиционными методами селекции?
Клонирование направлено на получение точных копий организма с уже известными характеристиками. Оно позволяет добиваться лучших результатов в более короткие сроки, чем традиционные методы селекции.
Клонирование дает возможность работать с отдельными клетками или небольшими зародышами. Например, при разведении крупного рогатого скота зародыш теленка на стадии недифференцированных клеток разделяют на фрагменты и помещают их в суррогатных матерей. В результате развиваются несколько идентичных телят с необходимыми признаками и свойствами.
При необходимости можно использовать и клонирование растений. В этом случае селекция происходит в клеточной культуре (на искусственно культивируемых изолированных клетках). И лишь затем из клеток, обладающих необходимыми свойствами, выращивают полноценные растения.
Наиболее известный пример клонирования — пересадка ядра соматической клетки в развивающуюся яйцеклетку. Эта технология в будущем позволит создать генетического двойника любого организма (или, что более актуально, его тканей и органов).