Реализация наследственной информации в клетке

Вопрос 1. Вспомните полное определение по­нятия «жизнь».

В середине XIX в. Фридрих Энгельс писал: «Жизнь есть способ существования белковых тел, существенным моментом которого явля­ется постоянный обмен веществ с окружаю­щей их внешней природой, причем с прекра­щением этого обмена веществ прекращается и жизнь, что приводит к разложению белка». На современном уровне знаний это классиче­ское определение жизни дополнено представ­лением об исключительной значимости нукле­иновых кислот — молекул, которые содержат генетическую информацию, позволяющую ор­ганизмам самовозобновляться и самовоспроизводиться (размножаться).

Приведем одно из современных определе­ний: «Живые тела, существующие на Земле, представляют собой открытые, саморегули­рующиеся и самовоспроизводящиеся системы, построенные из биополимеров — белков и нук­леиновых кислот». При этом понятие «откры­тая система» подразумевает отмеченный еще Ф. Энгельсом обмен веществами и энергией с окружающей средой (питание, дыхание, выде­ление); понятие «саморегуляция» — способ­ность к поддержанию постоянства химическо­го состава, структуры и свойств. Важным ус­ловием успешной саморегуляции является раздражимость — способность организма ре­агировать на информацию, поступающую из внешнего мира.

Вопрос 2. Назовите основные свойства генети­ческого кода и поясните их значение.

Можно выделить семь основных свойств ге­нетического кода.

Триплетность. Три стоящих подряд нук­леотида кодируют одну аминокислоту.

Однозначность. Один триплет не может кодировать более одной аминокислоты.

Избыточность. Одна аминокислота мо­жет быть кодирована более чем одним трипле­том.

Непрерывность. Между триплетами не существует «знаков препинания». Если «рам­ку считывания» сдвинуть на один нуклеотид, то весь код будет расшифрован неверно. В ка­честве примера приведем предложение, со­стоящее из трехбуквенных слов: жил был кот кот был сер. Теперь сдвинем «рамку считы­вания» на одну букву: илб ылк отк отб ылс ер.

Генетический код является неперекрывающимся. Любой нуклеотид может входить в состав только одного триплета.

Полярность. Существуют триплеты, оп­ределяющие начало и конец отдельных генов.

Универсальность. У всех живых организ­мов один и тот же триплет кодирует одну и ту же аминокислоту.

Вопрос 3. Какова сущность процесса передачи наследственной информации из поколения в поко­ление и из ядра в цитоплазму, к месту синтеза белка?

При передаче наследственной информации из поколения в поколение молекулы ДНК уд­ваиваются в процессе дупликации. Каждая до­черняя клетка получает одну из двух идентич­ных молекул ДНК. При бесполом размноже­нии генотип дочернего организма идентичен материнскому. При половом размножении ор­ганизм потомка получает собственный дипло­идный набор хромосом, собранный из гапло­идного материнского и гаплоидного отцовско­го наборов.

При передаче наследственной информации из ядра в цитоплазму ключевым процессом яв­ляется транскрипция — синтез РНК на ДНК. Синтезированная молекула иРНК является комплементарной копией определенного фраг­мента ДНК — гена и содержит информацию о строении определенного белка. Такая моле­кула иРНК является посредником между хра­нилищем генетической информации — ядром и цитоплазмой с рибосомами, где создаются белки. Рибосомы используют иРНК как мат­рицу («инструкцию») для синтеза белка в про­цессе трансляции.

Вопрос 4. Где синтезируются рибонуклеиновые кислоты?

Рибонуклеиновые кислоты синтезируются в ядре. Образование рРНК и сборка субъеди­ниц рибосом происходят в особых участках яд- pa — ядрышках. Небольшое количество РНК синтезируется в митохондриях и пластидах, где имеется собственная ДНК и собственные рибосомы.

Вопрос 5. Расскажите, где происходит синтез белка и как он осуществляется.

Синтез белка происходит в цитоплазме и осуществляется с помощью специализирован­ных органоидов — рибосом. Молекула иРНК соединяется с рибосомой тем концом, с кото­рого должен начаться синтез белка. Амино­кислоты, необходимые для синтеза белковой цепи, доставляются молекулами транспорт­ных РНК (тРНК). Каждая тРНК может пере­носить только одну из 20 аминокислот (напри­мер, только аланин). Какую конкретно амино­кислоту переносит тРНК, определяет триплет нуклеотидов, расположенный на верхушке центральной петли тРНК, — антикодон.

Если антикодон окажется комплементарен триплету нуклеотидов иРНК, находящемуся в данный момент в контакте с рибосомой, про­изойдет временное связывание тРНК с иРНК, и аминокислота будет включена в белковую цепь.

На следующем этапе освободившаяся тРНК уйдет в цитоплазму, а рибосома сделает «шаг» и сдвинется к следующему триплету иРНК. Затем к этому триплету подойдет тРНК с соответствующим антикодоном и доставит очеред­ную аминокислоту, которая будет присоедине­на к растущему белку.

Таким образом, включение аминокислот в белковую цепь происходит строго в соответст­вии с последовательностью расположения три­плетов цепи иРНК.