Вопросы для подготовки к экзамену по дисциплине «Теория надежности», 8-й семестр, 2011
Вид материала | Документы |
- Вопросы к экзамену по дисциплине «экономическая теория» (2 семестр), 18.27kb.
- В г. Воскресенске > к э. н., доцент К. А. Артамонова 2009 г. Вопросы к экзамену, 14.63kb.
- Вопросы к экзамену по дисциплине «Современные технологии финансового менеджмента» для, 27.98kb.
- Вопросы для подготовки к экзамену по дисциплине «Инновационный менеджмент», 20.05kb.
- Медиапланирование как составляющая рекламной кампании Этапы медиапланирования, 25.75kb.
- Вопросы для подготовки к экзамену для специальности «правоведение» по дисциплине «Экономическая, 23.02kb.
- Контрольные вопросы для самостоятельной работы и подготовки к экзамену по дисциплине, 24.86kb.
- Список вопросов для подготовки к экзамену по дисциплине: 1739 «Надежность, эргономика, 20.49kb.
- Комплекс маркетинга сельхозпредприятия. Особенности строительной продукции как товара., 22.56kb.
- 8. Вопросы для подготовки к экзамену, 83.39kb.
Вопросы для подготовки к экзамену по дисциплине «Теория надежности», 8-й семестр, 2011.
- Понятие надежности. Единичные свойства надежности. Большие системы энергетики. Надежность БСЭ.
- Основные распределения теории надежности. Показатели надежности невосстанавливаемых систем.
- Системы без восстановления (булевы модели надежности). Параллельно-последовательные и неприводимые системы.
- Структурная функция работоспособности. Взаимосвязь S(x) и вероятности безотказной работы. Индекс значимости по Бирнбауму.
- Двусторонние оценки R(t) в булевых моделях надежности.
- Восстанавливаемые системы. Показатели надежности. Булевы модели.
- Индекс значимости по Барлоу.
- Производящие функции. Система продуктоснабжения.
- Последовательное соединение участков. Параллельно-последовательное соединение
- Модель надежности магистральных трубопроводов.
- Марковские процессы (непрерывность и дифференцируемость функций Pij(t), определение марковского процесса матрицей Λ).
- Минимальный марковский процесс. Уравнения Колмогорова для функций Pij(t) и pj(t).
- Пуассоновский процесс. Марковское свойство.
- Сложение и просеивание пуассоновских процессов.
- Процесс гибели и его приложения в теории надежности.
- Процесс гибели-размножения и его приложения в теории надежности.
- Надежность функционирования восстанавливаемого элемента. Дублированная система с восстановлением (марковский случай).
- Модели надежности линейных участков.
- Модели надежности перекачивающих станций.
- Способы обоснования применимости марковских моделей.
- Критерии согласия. Проверка гипотезы о постоянстве параметра потока отказов.
- Оценки параметра показательного распределения.
- Процедура Каплана-Мейера.
- Распределения, допускающие преобразования сдвига и масштаба. Вероятностная бумага нормального распределения и распределения Вейбулла-Гнеденко.
- Распределение Эрланга и его использование для сведения процессов к марковским.
- Обобщенное распределение Эрланга и его использование для сведения процессов к марковским.
- Гиперэрланговское и обобщенное гиперэрланговское распределения и их использование для сведения процессов к марковским.