Анатолий Павлович Кондрашов Большая книга

Вид материалаКнига
Подобный материал:
1   ...   30   31   32   33   34   35   36   37   ...   92
4.28. Чем объясняется различие берегов рек, текущих в направлении меридиана?

Реки, текущие в направлении меридиана в Северном полушарии, подмывают правые берега, а в Южном – левые. Это явление впервые объяснил в 1857 году русский естествоиспытатель Карл Максимович Бэр (1792–1876). Кстати, по основной своей специальности он был не физиком, а биологом (его считают основателем эмбриологии.) Закон Бэра объясняет подмыв берегов рек влиянием суточного вращения Земли, вследствие которого на частицы речной воды действует ускорение Кориолиса, направленное вправо по отношению к скорости движения в Северном полушарии и влево – в Южном. Поскольку соответствующие берега препятствуют отклонению потока, река их подмывает. На экваторе ускорение Кориолиса равно нулю, а наибольшее его значение – у полюсов, поэтому закон Бэра сильнее сказывается в средних и высоких широтах. Действие закона прямо пропорционально массе движущейся воды и ясно заметно только в долинах крупных рек, почти не проявляясь на малых реках. Примером, подтверждающим закон Бэра, может служить строение берегов рек Днепра, Дона, Волги, Оби, Иртыша и Лены. Дунай и Нил также в большей части своего течения имеют высокий правый берег и низкий левый. В Южном полушарии реки с крутыми левыми берегами имеются в Новой Зеландии и в Южной Америке.


4.29. Насколько вес тела на экваторе Земли отличается от веса этого же тела на полюсах?

Вес любого физического тела зависит от того, на какой географической широте оно находится. Обусловлено это совместным действием двух факторов: несферичности (сплюснутости у полюсов) нашей планеты и ее суточным вращением. С увеличением географической широты основная составляющая веса (гравитационное притяжение, определяемое расстоянием между центрами масс Земли и взвешиваемого тела) увеличивается, а центробежный эффект, приводящий к снижению веса, уменьшается. Таким образом, любое тело имеет минимальный вес на экваторе, максимальный – на Северном полюсе (на Южном полюсе простирается возвышенность, а с удалением от центра Земли сила тяжести ослабевает). Разница между указанными минимальным и максимальным значениями веса тела составляет приблизительно 0,5 процента. Товар, весящий на экваторе тонну, прибавил бы в весе 5 килограммов, если бы его доставили на Северный полюс. При переносе вещей на полюс с других широт прибавка веса меньше, однако для крупных грузов она все же может выражаться внушительными числами. Так, груз морского судна, весящий в средних широтах 20 тысяч тонн, прибавил бы в весе 50 тонн, если бы это судно добралось до Северного полюса. Груз самолета, весящий в Москве 24 тонны, после посадки этого самолета на Северном полюсе стал бы тяжелее на 50 килограммов. Обнаружить такие «прибавки» можно только при помощи пружинных весов, потому что на весах рычажных гири тоже становятся соответственно тяжелее.


4.30. Что такое первая космическая скорость?

Первой космической называют минимальную скорость, которую нужно сообщить любому физическому телу (например, космическому аппарату), находящемуся в гравитационном поле небесного объекта (например, планеты или звезды), чтобы это тело стало спутником небесного объекта. На поверхности Земли (на уровне моря) первая космическая скорость равна 7,91 километра в секунду (при этом Земля считается абсолютно гладкой и лишенной атмосферы). С увеличением расстояния от притягивающего объекта первая космическая скорость уменьшается. Так, на высоте 300 километров над поверхностью Земли (уровнем моря) первая космическая скорость равна 7,73 километра в секунду, на высоте 1000 километров – 4,94 километра в секунду. Первая космическая скорость на поверхности Луны равна 1,68 километра в секунду.


4.31. Что такое вторая космическая скорость?

Минимальную скорость, которую нужно сообщить физическому телу (например, космическому аппарату), чтобы оно могло преодолеть гравитационное притяжение небесного объекта (например, планеты или звезды) и навсегда покинуть сферу его гравитационного действия, называют параболической скоростью (тело, имеющее такую скорость, движется по параболической траектории). Параболическая скорость уменьшается с увеличением расстояния от небесного объекта. Параболическую скорость у поверхности небесного объекта называют второй космической скоростью. Для Земли вторая космическая скорость равна 11,18 километра в секунду. Параболическая скорость на высоте 300 километров над поверхностью Земли (уровнем моря) равна 10,93 километра в секунду, на высоте 1000 километров – 6,98 километра в секунду. Для Солнца вторая космическая скорость равна 617,7 километра в секунду, а параболическая скорость на расстоянии 1 астрономической единицы от нашего светила (средний радиус земной орбиты) – 42,1 километра в секунду. Для самой большой планеты Солнечной системы (Юпитера) вторая космическая скорость равна 59,5 километра в секунду, для самой маленькой (Меркурия) – 4,2 километра в секунду.


4.32. Чему равна третья космическая скорость?

Третьей космической называют минимальную скорость, которую нужно сообщить телу (например, космическому аппарату) вблизи поверхности Земли, чтобы оно могло, преодолев гравитационное притяжение Земли и Солнца, навсегда покинуть Солнечную систему. Третья космическая скорость равна приблизительно 16,6 километра в секунду (при запуске на высоте 200 километров над земной поверхностью), при этом направление скорости тела относительно Земли должно совпадать с направлением скорости орбитального движения Земли.


4.33. Что изучает классическая механика?

Классическая механика изучает движение макроскопических тел со скоростями, малыми по сравнению со скоростью света. В основе классической механики лежат законы Ньютона. Движение микрочастиц (способ описания и законы движения) в заданных внешних полях изучает квантовая механика, а законы механического движения тел (частиц) при скоростях, сравнимых со скоростью света, изучает релятивистская механика, основанная на специальной теории относительности.


4.34. Что удерживает Луну на околоземной орбите?

Упасть за Землю нашему естественному спутнику не позволяет его орбитальная скорость, превышающая первую космическую. А вырваться из гравитационных объятий Земли и навсегда покинуть ее окрестности мешает земное притяжение, для преодоления которого орбитальная скорость Луны недостаточно велика (меньше второй космической скорости).


4.35. Чем математический маятник отличается от физического?

Математическим маятником называют материальную точку, совершающую под действием силы тяжести колебательные движения. Приближенно таким маятником можно считать тяжелый груз достаточно малых размеров, подвешенный на нити. Период колебаний математического маятника определяется всего двумя параметрами – ускорением свободного падения и длиной нити (не зависит от массы материальной точки). Физический маятник – тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, не проходящей через центр тяжести тела. В формулу для определения периода колебания физического маятника входят 4 параметра: ускорение свободного падения, расстояние между центром тяжести и осью вращения, масса тела и его момент инерции относительно оси, вокруг которой совершаются колебания.


4.36. Почему для измерения небольших отрезков времени (в несколько минут) песочные часы предпочтительнее водяных?

Скорость вытекания жидкости и песка (сыпучего вещества) через отверстие в дне сосуда определяется величиной давления на дне сосуда. Давление жидкости на дно сосуда возрастает пропорционально высоте ее уровня, причем никакими факторами, кроме высоты столба жидкости, это возрастание не ограничено. Давление же песка на дно сосуда с увеличением высоты слоя песка сначала растет, но затем, достигнув некоторого значения, далее остается неизменным. Дело в том, что силы, действующие между частицами песка, переносят избыточное давление на стенки сосуда. Именно поэтому количество песчинок, проходящих в единицу времени через отверстие, соединяющее две колбы песочных часов, остается примерно постоянным. Скорость же вытекания воды из отверстия в дне сосуда по мере снижения уровня непрерывно уменьшается. Вот почему для измерения небольших отрезков времени песочные часы предпочтительнее водяных.


4.37. Что такое зыбучие пески и почему они опасны?

Известно немало случаев, когда люди становились жертвой так называемых зыбучих песков. В способности обычного на вид песка внезапно проглатывать находящиеся на его поверхности предметы легко увидеть что-то мистическое, однако это явление имеет довольно простое физическое объяснение. Дело в том, что свойства влажного песка очень существенно зависят от количества воды в нем. Слегка увлажненные песчинки легко слипаются, демонстрируя резкий рост сил сцепления, которые в сухом песке определяются только неровностями поверхности, а потому невелики. Слипаться их заставляют силы поверхностного натяжения пленок воды, окружающих каждую песчинку. Чтобы песчинки хорошо слипались, вода должна только лишь покрывать частицы и их группы тонкой пленкой, большая же часть пространства между ними должна оставаться заполненной воздухом. Если количество воды в песке увеличивать, то, как только все пространство между песчинками заполнится водой, силы поверхностного натяжения пропадут и получится смесь песка и воды, обладающая совершенно другими свойствами. Зыбучий песок – это самый обычный песок, под толщей которого на глубине нескольких метров имеется достаточно сильный источник воды. Чаще всего зыбучие пески встречаются в холмистой местности. Спускаясь с гор, потоки воды движутся по каналам внутри доломитовых и известняковых скал. Где-то ниже по течению вода может пробить камень и устремиться вверх мощным потоком. Если на поверхности находятся песчаные отложения, то поток воды, идущий снизу, превратит их в зыбучие пески. Часто солнце подсушивает верхний слой песка, образуя тонкую твердую корочку, на которой может даже расти трава. Внешне такое «песчаное болото» выглядит вполне надежно и не вызывает никаких подозрений, однако стоит на него ступить, как почва в буквальном смысле поплывет из-под ног. Хотя плотность зыбучего песка примерно в 1,6 раза больше плотности воды, плавать в зыбучем песке гораздо сложнее. Он очень вязок, поэтому любая попытка двигаться в нем встречает сильное противодействие. Медленно текущая песчаная масса не успевает заполнить возникающую за сдвинутым предметом полость, и в ней возникает разрежение, вакуум. Сила атмосферного давления стремится вернуть предмет на прежнее место – создается впечатление, что песок «засасывает» свою жертву. Кроме того, перемещаться в зыбучем песке можно только очень медленно и плавно, так как смесь воды и твердых частиц песка инерционна по отношению к быстрым перемещениям: в ответ на резкое движение она как бы затвердевает.


4.38. Чем кирпичная печная труба лучше металлической?

Печная труба не только выбрасывает в атмосферу продукты сгорания, но и создает тягу, улучшающую условия горения. Нагретый воздух расширяется – при типичной для топочных газов температуре около 300 градусов по Цельсию объем этих газов в 2 раза больше, а давление в 2 раза меньше, чем у окружающего воздуха. Благодаря этому сквозь топку идет мощный поток воздуха, обеспечивающий горение. Тонкая металлическая труба охлаждается значительно сильнее, чем толстая кирпичная, поэтому ее тяга, особенно зимой, будет слабее.


4.39. Как насекомые ходят по воде?

Некоторые насекомые, например водомерки, свободно ходят по поверхности воды. Присмотревшись, можно увидеть, что там, где их тонкие длинные ноги соприкасаются с поверхностью воды, на ней появляются небольшие вмятины. Поверхность воды ведет себя так, как если бы она была покрыта тонкой пленкой, которая под весом насекомого растягивается, не разрываясь при этом. Физики называют это явление поверхностным натяжением. Оно обусловлено силами притяжения между молекулами. Внутри жидкости силы притяжения между молекулами взаимно компенсируются, а на молекулы, находящиеся вблизи поверхности жидкости, действует некомпенсированная результирующая сила, направленная внутрь от поверхности. Поэтому, чтобы переместить молекулу из глубины на поверхность жидкости, надо совершить работу против этой результирующей силы. Таким образом, молекулы на поверхности жидкости обладают определенной потенциальной энергией, которая и проявляется как поверхностное натяжение. Именно благодаря поверхностному натяжению капля жидкости в невесомости принимает такую форму, при которой обеспечивается минимальная площадь поверхности, – форму шара.


4.40. Почему вода остается на коже вышедшего из нее человека, а не скатывается вниз?

Вода остается на коже вышедшего из нее человека, а не скатывается вниз, как, например, с покрытого жиром оперения водоплавающих птиц, лишь потому, что кожа человека смачивается водой: молекулы воды притягиваются силами межмолекулярного взаимодействия к коже сильнее, чем друг к другу. Еще сильнее смачивается водой хлопчатобумажная ткань полотенца – молекулы воды притягиваются к ткани полотенца сильнее, чем к коже, и переходят при вытирании с кожи на полотенце. В противном случае полотенце просто размазывало бы воду по коже, не впитывая ее (именно так и случилось бы, если бы полотенце было сшито из синтетической ткани, отталкивающей воду). Смачивание – поверхностное явление, возникающее при соприкосновении жидкости с твердым телом, – проявляется также в растекании жидкости по твердой поверхности. Оно играет важную роль в пропитке и сушке пористых материалов, моющем действии, пайке металлов, склеивании, течении жидкости в условиях невесомости.


4.41. Как измеряют твердость материалов?

Твердость материала проявляется в его сопротивлении вдавливанию или царапанию. Твердость не является физической постоянной, а представляет собой сложное свойство, зависящее как от прочности и пластичности материала, так и от метода измерения. Для измерения твердости металлов чаще всего пользуются методом вдавливания. При этом величина твердости равна нагрузке, отнесенной к поверхности отпечатка, или обратно пропорциональна глубине отпечатка при некоторой фиксированной нагрузке. Отпечаток обычно производят шариком из закаленной стали (методы Бринелля, Роквелла), алмазным конусом (метод Роквелла) или алмазной пирамидой (метод Виккерса). Реже пользуются динамическими методами измерения, в которых мерой твердости является высота отскакивания стального шарика от поверхности изучаемого металла (например, метод Шора) или время затухания колебания маятника, опорой которого является исследуемый металл (метод Кузнецова – Герберта – Ребиндера). Получил распространение также метод измерения твердости с помощью ультразвуковых колебаний, в основе которого лежит измерение реакции колебательной системы (изменения ее собственной частоты) на твердость испытуемого металла. Выбор метода определения твердости зависит от исследуемого материала, размеров и формы образца или изделия и других факторов. В минералогии твердость оценивают по шкале Мооса, при этом используют 10 эталонов твердости: тальк – 1, гипс – 2, кальцит – 3, флюорит – 4, апатит – 5, ортоклаз – 6, кварц – 7, топаз – 8, корунд – 9, алмаз – 10. Относительная твердость определяется путем царапания поверхности испытываемого объекта эталоном шкалы. Если эталон с твердостью 5 царапает исследуемый образец, а последний оставляет след на поверхности эталона с твердостью 4, то твердость минерала приблизительно равна 4,5.


4.42. Сколько агрегатных состояний вещества известно в настоящее время?

Агрегатными состояниями вещества называют состояния (фазы) одного и того же вещества в различных интервалах температур и давлений. Обычно рассматривают газообразное, жидкое и твердое агрегатные состояния, переходы между которыми сопровождаются скачкообразными изменениями свободной энергии, энтропии, плотности и других физических характеристик вещества. С увеличением температуры газов при фиксированном давлении они превращаются в ионизированную плазму, которую также принято считать агрегатным состоянием. В 1995 году американские физики Эрик Корнелл и Карл Уайман и немецкий физик Вольфганг Кеттерле получили пятое агрегатное состояние вещества – бозе-эйнштейновский конденсат. В 2004 году международной группой физиков открыто шестое агрегатное состояние вещества – фермионный конденсат.


4.43. Почему мы говорим «водяной пар», а не «водяной газ»?

Еще на заре науки было известно, что многие вещества могут существовать в виде газа, жидкости или в твердом состоянии – в зависимости от температуры. Наиболее известный пример – вода: если ее достаточно охладить, она замерзает, а если подогреть, превращается в пар. Никакой принципиальной разницы между газом и паром нет. Однако голландский естествоиспытатель Ян Баптист Гельмонт (1579–1644), введший в науку термин «газ», разделял вещества на те, которые имеют газообразный вид при обычной температуре, такие как двуокись углерода, и те, которые наподобие водяного пара становятся газами лишь при достаточном нагреве. Последние вещества он назвал парами, и мы до сих пор говорим «водяной пар», а не «водяной газ».


4.44. При какой температуре закипает вода на высочайшей вершине мира – Джомолунгме?

Температура кипения – фазового перехода из жидкого в газообразное состояние (и наоборот) – воды, как и любого другого вещества, возрастает с увеличением внешнего давления. При стандартном атмосферном давлении на уровне моря (101,3 килопаскаля) температура кипения воды составляет 100 градусов Цельсия. На высочайшей вершине мира – Джомолунгме, где стандартное атмосферное давление составляет 31,5 килопаскаля, температура кипения воды равна 69,7 градуса Цельсия. При давлении, равном давлению воды на глубине 1 километр (9807 килопаскалей), вода закипает при температуре 309,5 градуса Цельсия.


4.45. При какой температуре вода имеет максимальшую плотность?

Еще из школьного курса физики мы знаем, что при нагревании все вещества – твердые, жидкие и газообразные – расшираются. Вода является одним из немногих исключений из этого правила, она имеет максимум плотности (минимум удельного объема) при температуре +3,98 градуса Цельсия. Вода расширяется как при нагревании выше этой температуры, так и при охлаждении ниже ее.


4.46. При какой температуре замерзает вода?

Ответ на этот вопрос представляется очевидным – при 0 градусов Цельсия, – однако он не совсем корректен. Если подвергнуть медленному охлаждению очень чистую (лучше всего дистиллированную) воду, то она может оставаться жидкой и при температуре в несколько градусов ниже нуля. Однако, если в эту переохлажденную воду бросить маленький кусочек льда, щепотку снега или просто пыли, вода мгновенно замерзнет, прорастая по всему объему длинными кристаллами. Столь странное поведение воды объясняется особенностями процесса кристаллизации. Превращение жидкости в кристалл происходит в первую очередь на примесях и неоднородностях – частичках пыли, пузырьках воздуха, царапинах на стенках сосуда. Чистая вода центров кристаллизации практически лишена, поэтому она может переохлаждаться (и довольно сильно), оставаясь жидкой. Известен случай, когда содержимое хорошо охлажденной в морозильнике бутылки нарзана, открытой жарким летним днем, мгновенно превратилось в кусок льда. В лабораторных условиях температуру воды, правда, в очень малых объемах, удавалось довести до -70 градусов Цельсия.


4.47. Почему лед плавает?

Лед плавает, потому что в отличие от большинства других веществ, кристаллизация которых сопровождается увеличением плотности, вода при замерзании скачкообразно расширяется (плотность ее скачкообразно падает). Причина этого явления, утверждают физики, состоит в особенностях структуры льда и воды. Молекулы воды, состоящие из одного атома кислорода и двух атомов водорода, имеют вид шариков с выпуклостями. В кристалле льда они располагаются так, что выпуклости (соответствующие атомам водорода) ориентируются строго по направлению двух соседних молекул. В результате возникает трехмерная кристаллическая решетка, состоящая из почти идеальных тетраэдров. Каждая молекула в его вершинах окружена четырьмя другими. У воды нет такой упорядоченной структуры, расположение ее молекул все время меняется. Но в любой момент каждую молекулу воды окружают 4–5 «соседок», так что среднее их число оказывается равным 4,4. Это означает, что молекулы воды в жидкости располагаются теснее, чем в кристалле, а потому вода плотнее льда.


4.48. Почему в кувшинах гончаров Средней Азии вода холодная даже в самую жару?

Стенки изготовленных среднеазиатскими умельцами кувшинов имеют поры. Чтобы получить пористый черепок, глину смешивают с порошком, выгорающим при обжиге, – костной мукой или угольной пылью. Сквозь поры просачивается вода, которая в жару быстро испаряется. Тепло, необходимое для испарения, вода отбирает у самого кувшина, охлаждая его (это станет очевидным, если подуть сначала на влажную руку, а потом на сухую). Чем суше и жарче воздух, тем интенсивнее идет испарение, тем сильнее охлаждается кувшин.


4.49. Если в жаркий летний день неожиданно сломался холодильник, то что следует сделать, дабы лежавший в нем кусок масла не растаял: опустить масленку в холодную воду или поставить ее в неглубокую миску с водой, предварительно обмотав куском марли?

Мокрая ткань, с поверхности которой интенсивно испаряется вода, охлаждает гораздо эффективнее, чем просто холодная вода. Поэтому масленку следует поставить в неглубокую миску с водой, предварительно обмотав куском марли.


4.50. Как изменяются свойства льда под воздействием сверхвысокого давления?

В первой половине ХХ века американский физик Перси Уильямс Бриджмен (1882–1961) провел ряд экспериментов, в которых подверг лед давлению в несколько тысяч атмосфер. В результате он получил целую серию новых видов льда, обладавших значительно большими, чем у обычного льда, плотностью и температурой таяния. Один из полученных образцов был более чем в 1,5 раза тяжелее воды, другой оставался твердым при температуре выше температуры кипения воды.